Spaces:
Sleeping
Sleeping
File size: 15,600 Bytes
b0779f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
import pandas as pd
import numpy as np
import spacy
from textblob import TextBlob
from transformers import pipeline
from langdetect import detect, DetectorFactory
from functools import lru_cache
DetectorFactory.seed = 0 # deterministic langdetect
APP_TITLE = "🚀 Análisis Épico de Sentimientos (Multimodelo + Lingüística)"
# ==============================
# Carga perezosa (lazy) de modelos
# ==============================
@lru_cache(maxsize=1)
def load_spacy():
try:
nlp = spacy.load("es_core_news_sm")
return nlp, "✅ spaCy (es_core_news_sm)"
except Exception as e:
return None, f"❌ spaCy no disponible: {e}"
@lru_cache(maxsize=1)
def load_multilingual_sentiment():
try:
clf = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
return clf, "✅ Multilingual Sentiment cargado"
except Exception as e:
return None, f"❌ Multilingual Sentiment no disponible: {e}"
@lru_cache(maxsize=1)
def load_multilingual_bert():
try:
clf = pipeline("sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment",
tokenizer="nlptown/bert-base-multilingual-uncased-sentiment")
return clf, "✅ BERT Multilingual (estrellas) cargado"
except Exception as e:
return None, f"❌ BERT Multilingual no disponible: {e}"
# ==============================
# Léxico sencillo ES + resaltado
# ==============================
PAL_POS = {
'bueno','excelente','fantástico','maravilloso','perfecto','genial',
'increíble','amo','encanta','feliz','contento','satisfecho','agradable',
'recomiendo','magnífico','extraordinario','asombroso','estupendo',
'óptimo','superior','inmejorable','ideal','brutal','espectacular'
}
PAL_NEG = {
'malo','terrible','horrible','pésimo','odio','decepcionado','fatal',
'triste','enojado','frustrado','pobre','deficiente','desastroso',
'insatisfecho','decepcionante','horroroso','malísimo','inútil',
'defectuoso','deplorable','lamentable','desagradable'
}
def lexical_score(text, nlp):
text_low = text.lower().strip()
if not nlp:
# fallback básico sin lematizar
tokens = [t for t in ''.join([c if c.isalpha() or c.isspace() else ' ' for c in text_low]).split() if len(t)>2]
lemmas = tokens
else:
doc = nlp(text_low)
lemmas = [t.lemma_ for t in doc if t.is_alpha and len(t) > 2]
pos = sum(1 for w in lemmas if w in PAL_POS)
neg = sum(1 for w in lemmas if w in PAL_NEG)
total = max(1, len(lemmas))
raw = (pos - neg) / total
norm = max(-1.0, min(1.0, raw * 5))
return {"positivas": pos, "negativas": neg, "total": total, "normalized_score": norm, "lemmas": lemmas}
def highlight_words(text, nlp):
# Resalta palabras del léxico en el texto original
if not text:
return ""
original = text
if nlp:
doc = nlp(original)
tokens = [t.text for t in doc]
else:
tokens = original.split()
def wrap(tok):
low = tok.lower()
if low in PAL_POS:
return f"<mark style='background:#D1FAE5; padding:2px 4px; border-radius:4px'>+{tok}</mark>"
if low in PAL_NEG:
return f"<mark style='background:#FEE2E2; padding:2px 4px; border-radius:4px'>-{tok}</mark>"
return tok
return " ".join(wrap(t) for t in tokens)
# ==============================
# Sentimiento por modelos
# ==============================
STAR_MAP = {'1 star': -1.0, '2 stars': -0.5, '3 stars': 0.0, '4 stars': 0.5, '5 stars': 1.0}
def model_scores(text):
out = {}
clf1, status1 = load_multilingual_sentiment()
clf2, status2 = load_multilingual_bert()
nlp, _ = load_spacy()
# Multilingual Sentiment
if clf1:
try:
r = clf1(text)[0]
out['multilingual'] = {
"label": r['label'], "score": float(r['score']),
"normalized_score": float(r['score']) if r['label']=='POSITIVE' else -float(r['score'])
}
except Exception as e:
out['multilingual'] = {"error": str(e)}
else:
out['multilingual'] = {"error": status1}
# BERT estrellas
if clf2:
try:
r = clf2(text)[0]
out['bert'] = {
"label": r['label'], "score": float(r.get('score', 0.0)),
"normalized_score": float(STAR_MAP.get(r['label'], 0.0))
}
except Exception as e:
out['bert'] = {"error": str(e)}
else:
out['bert'] = {"error": status2}
# Léxico
try:
out['lexico'] = lexical_score(text, nlp)
except Exception as e:
out['lexico'] = {"error": str(e)}
# TextBlob
try:
blob = TextBlob(text)
out['textblob'] = {
"polarity": float(blob.sentiment.polarity),
"subjectivity": float(blob.sentiment.subjectivity),
"normalized_score": float(blob.sentiment.polarity)
}
except Exception as e:
out['textblob'] = {"error": str(e)}
return out
def fuse_scores(results, w_multi=0.4, w_bert=0.3, w_lex=0.2, w_tb=0.1, thr=0.2):
scores = []
if 'normalized_score' in results.get('multilingual', {}):
scores.append(results['multilingual']['normalized_score'] * w_multi)
if 'normalized_score' in results.get('bert', {}):
scores.append(results['bert']['normalized_score'] * w_bert)
if 'normalized_score' in results.get('lexico', {}):
scores.append(results['lexico']['normalized_score'] * w_lex)
if 'normalized_score' in results.get('textblob', {}):
scores.append(results['textblob']['normalized_score'] * w_tb)
if not scores:
return "❓ INDETERMINADO", 0.0, "#FB923C"
s = float(np.sum(scores))
if s > thr:
return "😊 POSITIVO", s, "#10B981"
elif s < -thr:
return "😠 NEGATIVO", s, "#EF4444"
else:
return "😐 NEUTRO", s, "#6B7280"
def detect_lang(text):
try:
return detect(text)
except Exception:
return "unknown"
# ==============================
# Análisis de texto (UI)
# ==============================
def analyze_text(text, w_multi, w_bert, w_lex, w_tb, thr):
text = (text or "").strip()
if not text:
return "❌ Ingresa un texto", "", "", ""
lang = detect_lang(text)
models = model_scores(text)
label, final, color = fuse_scores(models, w_multi, w_bert, w_lex, w_tb, thr)
nlp, _ = load_spacy()
header = f"""
<div style='background:{color}22; border-left:6px solid {color}; padding:16px; border-radius:10px'>
<div style='display:flex; justify-content:space-between; align-items:center'>
<h2 style='margin:0; color:{color}'>{label}</h2>
<code style='opacity:0.8'>Idioma detectado: {lang}</code>
</div>
<p style='margin:4px 0'><b>Puntuación combinada:</b> {final:.3f}</p>
<p style='margin:4px 0'><b>Longitud:</b> {len(text)} caracteres</p>
</div>
"""
# Detalles por modelo
def block(name, d):
if 'error' in d:
return f"<div><b>{name}</b><br><span style='color:#EF4444'>Error: {d['error']}</span></div>"
rows = []
for k,v in d.items():
if isinstance(v, float):
rows.append(f"{k}: {v:.3f}")
else:
rows.append(f"{k}: {v}")
return f"<div style='padding:8px; border:1px solid #e5e7eb; border-radius:8px'><b>{name}</b><br>" + "<br>".join(rows) + "</div>"
details = "<h3>📊 Resultados por método</h3>" + "<div style='display:grid; gap:10px; grid-template-columns: repeat(auto-fit,minmax(240px,1fr))'>" + block("Multilingual", models.get('multilingual', {})) + block("BERT (estrellas)", models.get('bert', {})) + block("Léxico (ES)", models.get('lexico', {})) + block("TextBlob", models.get('textblob', {})) + "</div>"
# Resaltado léxico
highlighted = highlight_words(text, nlp)
highlight_html = f"""
<h3>🔎 Palabras clave detectadas</h3>
<div style='padding:12px; border:1px dashed #d1d5db; border-radius:10px'>{highlighted}</div>
"""
# Lingüística resumida
if nlp:
doc = nlp(text)
ents = "<br>".join([f"• {e.text} ({e.label_})" for e in list(doc.ents)[:8]]) or "—"
ling = f"""
<h3>📝 Análisis lingüístico (spaCy)</h3>
<ul>
<li>Tokens: {len(doc)}</li>
<li>Palabras: {len([t for t in doc if t.is_alpha])}</li>
<li>Oraciones: {len(list(doc.sents))}</li>
<li>Entidades: {len(doc.ents)}</li>
</ul>
<p><b>Entidades detectadas:</b><br>{ents}</p>
"""
else:
ling = "<p style='color:#EF4444'>spaCy no disponible (modelo es_core_news_sm no instalado)</p>"
return header, details, highlight_html, ling
# ==============================
# Excel/CSV
# ==============================
def analyze_file(file, max_rows, text_cols_manual, w_multi, w_bert, w_lex, w_tb, thr):
if file is None:
return pd.DataFrame([{"Resultado":"❌ Sube un archivo .xlsx o .csv"}])
name = getattr(file, "name", "archivo")
try:
if name.lower().endswith(".csv"):
df = pd.read_csv(file)
else:
df = pd.read_excel(file)
except Exception as e:
return pd.DataFrame([{"Error": f"❌ No pude leer el archivo: {e}"}])
# Detectar columnas de texto si no se especifican
if text_cols_manual:
cols = [c.strip() for c in text_cols_manual.split(",") if c.strip() in df.columns]
else:
cols = []
for c in df.columns:
if df[c].dtype == "object":
sample = df[c].dropna().astype(str).head(5).tolist()
if any(len(s.split()) >= 5 for s in sample):
cols.append(c)
cols = cols[:2] # máximo 2 columnas por defecto
if not cols:
return pd.DataFrame([{"Resultado":"❌ No encontré columnas de texto (o especifica manualmente)"}])
records = []
for c in cols:
for i, text in enumerate(df[c].dropna().astype(str).head(max_rows), start=1):
models = model_scores(text)
label, s, _ = fuse_scores(models, w_multi, w_bert, w_lex, w_tb, thr)
records.append({
"Columna": c,
"Fila": i,
"Texto": (text[:140] + "...") if len(text) > 140 else text,
"Sentimiento": label.replace("😊 ","").replace("😠 ","").replace("😐 ",""),
"Score": round(s,3),
"Len": len(text)
})
return pd.DataFrame.from_records(records)
# ==============================
# UI
# ==============================
with gr.Blocks(theme="soft", title=APP_TITLE, css="""
#component-0 .hover\:bg-red-500:hover{ background: none }
.markdown-body h1, .markdown-body h2 { margin-top:0 }
""") as demo:
gr.Markdown(f"""
# {APP_TITLE}
**Combina múltiples modelos, léxico y análisis lingüístico. Ajusta pesos y genera insights épicos.**
""")
with gr.Tab("📝 Texto individual"):
with gr.Row():
with gr.Column(scale=5):
text_in = gr.Textbox(label="Texto", lines=6, placeholder="Escribe aquí en ES/EN/FR/PT...")
with gr.Accordion("⚙️ Pesos y umbral", open=False):
w_multi = gr.Slider(0,1,value=0.4,step=0.05,label="Peso Multilingual")
w_bert = gr.Slider(0,1,value=0.3,step=0.05,label="Peso BERT")
w_lex = gr.Slider(0,1,value=0.2,step=0.05,label="Peso Léxico")
w_tb = gr.Slider(0,1,value=0.1,step=0.05,label="Peso TextBlob")
thr = gr.Slider(0,1,value=0.2,step=0.01,label="Umbral de neutro (|score| ≤ umbral)")
btn = gr.Button("🔍 Analizar", variant="primary")
gr.Examples(
examples=[
["Me encanta este producto, superó mis expectativas y lo recomiendo."],
["Pésimo servicio, llegó tarde y defectuoso. Muy decepcionado."],
["El producto cumple, pero no destaca. Está bien por el precio."],
["I absolutely love it! Great quality and fast delivery."],
["C'est un service horrible, je ne le recommande à personne."],
["O atendimento foi excelente e o produto é ótimo."]
],
inputs=[text_in]
)
with gr.Column(scale=5):
head = gr.HTML(label="🎯 Resultado")
methods = gr.HTML(label="📊 Detalles por modelo")
highlights = gr.HTML(label="🔎 Palabras clave")
ling = gr.HTML(label="📝 Lingüística")
btn.click(analyze_text, [text_in, w_multi, w_bert, w_lex, w_tb, thr], [head, methods, highlights, ling])
text_in.submit(analyze_text, [text_in, w_multi, w_bert, w_lex, w_tb, thr], [head, methods, highlights, ling])
with gr.Tab("📈 Lote (Excel/CSV)"):
with gr.Row():
with gr.Column(scale=5):
f = gr.File(label="Sube .xlsx o .csv")
max_rows = gr.Slider(5, 500, value=100, step=5, label="Filas máximas por columna")
text_cols_manual = gr.Textbox(label="Columnas de texto (opcional, separadas por coma)")
with gr.Accordion("⚙️ Pesos y umbral", open=False):
w_multi2 = gr.Slider(0,1,value=0.4,step=0.05,label="Peso Multilingual")
w_bert2 = gr.Slider(0,1,value=0.3,step=0.05,label="Peso BERT")
w_lex2 = gr.Slider(0,1,value=0.2,step=0.05,label="Peso Léxico")
w_tb2 = gr.Slider(0,1,value=0.1,step=0.05,label="Peso TextBlob")
thr2 = gr.Slider(0,1,value=0.2,step=0.01,label="Umbral de neutro")
btn2 = gr.Button("🚀 Analizar archivo", variant="primary")
with gr.Column(scale=5):
df_out = gr.Dataframe(wrap=True, label="Resultados")
dl = gr.DownloadButton(label="⬇️ Descargar CSV", value=None)
def _pipe(file, max_rows, text_cols_manual, w1,w2,w3,w4,thr):
df = analyze_file(file, int(max_rows), text_cols_manual, w1,w2,w3,w4,thr)
# generar CSV temporal
try:
csv = df.to_csv(index=False).encode("utf-8")
return df, csv
except Exception:
return df, None
btn2.click(_pipe,
[f, max_rows, text_cols_manual, w_multi2, w_bert2, w_lex2, w_tb2, thr2],
[df_out, dl])
with gr.Tab("ℹ️ Sistema & Modelos"):
spacy_status = load_spacy()[1]
m1_status = load_multilingual_sentiment()[1]
m2_status = load_multilingual_bert()[1]
gr.Markdown(f"""
### Estado de modelos
- {spacy_status}
- {m1_status}
- {m2_status}
### Cómo mejorar precisión
- Ajusta pesos según tu dominio (por ejemplo, más peso al léxico para español coloquial).
- Entrena un diccionario propio con palabras frecuentes de tus clientes.
- Limpia el texto (remueve spam, URLs, firmas) antes de analizar.
- Para grandes volúmenes, considera un modelo fine-tuned con tus datos.
""")
if __name__ == "__main__":
demo.launch()
|