import gradio as gr import pandas as pd import numpy as np import spacy from textblob import TextBlob from transformers import pipeline from langdetect import detect, DetectorFactory from functools import lru_cache DetectorFactory.seed = 0 # deterministic langdetect APP_TITLE = "🚀 Análisis Épico de Sentimientos (Multimodelo + Lingüística)" # ============================== # Carga perezosa (lazy) de modelos # ============================== @lru_cache(maxsize=1) def load_spacy(): try: nlp = spacy.load("es_core_news_sm") return nlp, "✅ spaCy (es_core_news_sm)" except Exception as e: return None, f"❌ spaCy no disponible: {e}" @lru_cache(maxsize=1) def load_multilingual_sentiment(): try: clf = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis") return clf, "✅ Multilingual Sentiment cargado" except Exception as e: return None, f"❌ Multilingual Sentiment no disponible: {e}" @lru_cache(maxsize=1) def load_multilingual_bert(): try: clf = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment", tokenizer="nlptown/bert-base-multilingual-uncased-sentiment") return clf, "✅ BERT Multilingual (estrellas) cargado" except Exception as e: return None, f"❌ BERT Multilingual no disponible: {e}" # ============================== # Léxico sencillo ES + resaltado # ============================== PAL_POS = { 'bueno','excelente','fantástico','maravilloso','perfecto','genial', 'increíble','amo','encanta','feliz','contento','satisfecho','agradable', 'recomiendo','magnífico','extraordinario','asombroso','estupendo', 'óptimo','superior','inmejorable','ideal','brutal','espectacular' } PAL_NEG = { 'malo','terrible','horrible','pésimo','odio','decepcionado','fatal', 'triste','enojado','frustrado','pobre','deficiente','desastroso', 'insatisfecho','decepcionante','horroroso','malísimo','inútil', 'defectuoso','deplorable','lamentable','desagradable' } def lexical_score(text, nlp): text_low = text.lower().strip() if not nlp: # fallback básico sin lematizar tokens = [t for t in ''.join([c if c.isalpha() or c.isspace() else ' ' for c in text_low]).split() if len(t)>2] lemmas = tokens else: doc = nlp(text_low) lemmas = [t.lemma_ for t in doc if t.is_alpha and len(t) > 2] pos = sum(1 for w in lemmas if w in PAL_POS) neg = sum(1 for w in lemmas if w in PAL_NEG) total = max(1, len(lemmas)) raw = (pos - neg) / total norm = max(-1.0, min(1.0, raw * 5)) return {"positivas": pos, "negativas": neg, "total": total, "normalized_score": norm, "lemmas": lemmas} def highlight_words(text, nlp): # Resalta palabras del léxico en el texto original if not text: return "" original = text if nlp: doc = nlp(original) tokens = [t.text for t in doc] else: tokens = original.split() def wrap(tok): low = tok.lower() if low in PAL_POS: return f"+{tok}" if low in PAL_NEG: return f"-{tok}" return tok return " ".join(wrap(t) for t in tokens) # ============================== # Sentimiento por modelos # ============================== STAR_MAP = {'1 star': -1.0, '2 stars': -0.5, '3 stars': 0.0, '4 stars': 0.5, '5 stars': 1.0} def model_scores(text): out = {} clf1, status1 = load_multilingual_sentiment() clf2, status2 = load_multilingual_bert() nlp, _ = load_spacy() # Multilingual Sentiment if clf1: try: r = clf1(text)[0] out['multilingual'] = { "label": r['label'], "score": float(r['score']), "normalized_score": float(r['score']) if r['label']=='POSITIVE' else -float(r['score']) } except Exception as e: out['multilingual'] = {"error": str(e)} else: out['multilingual'] = {"error": status1} # BERT estrellas if clf2: try: r = clf2(text)[0] out['bert'] = { "label": r['label'], "score": float(r.get('score', 0.0)), "normalized_score": float(STAR_MAP.get(r['label'], 0.0)) } except Exception as e: out['bert'] = {"error": str(e)} else: out['bert'] = {"error": status2} # Léxico try: out['lexico'] = lexical_score(text, nlp) except Exception as e: out['lexico'] = {"error": str(e)} # TextBlob try: blob = TextBlob(text) out['textblob'] = { "polarity": float(blob.sentiment.polarity), "subjectivity": float(blob.sentiment.subjectivity), "normalized_score": float(blob.sentiment.polarity) } except Exception as e: out['textblob'] = {"error": str(e)} return out def fuse_scores(results, w_multi=0.4, w_bert=0.3, w_lex=0.2, w_tb=0.1, thr=0.2): scores = [] if 'normalized_score' in results.get('multilingual', {}): scores.append(results['multilingual']['normalized_score'] * w_multi) if 'normalized_score' in results.get('bert', {}): scores.append(results['bert']['normalized_score'] * w_bert) if 'normalized_score' in results.get('lexico', {}): scores.append(results['lexico']['normalized_score'] * w_lex) if 'normalized_score' in results.get('textblob', {}): scores.append(results['textblob']['normalized_score'] * w_tb) if not scores: return "❓ INDETERMINADO", 0.0, "#FB923C" s = float(np.sum(scores)) if s > thr: return "😊 POSITIVO", s, "#10B981" elif s < -thr: return "😠 NEGATIVO", s, "#EF4444" else: return "😐 NEUTRO", s, "#6B7280" def detect_lang(text): try: return detect(text) except Exception: return "unknown" # ============================== # Análisis de texto (UI) # ============================== def analyze_text(text, w_multi, w_bert, w_lex, w_tb, thr): text = (text or "").strip() if not text: return "❌ Ingresa un texto", "", "", "" lang = detect_lang(text) models = model_scores(text) label, final, color = fuse_scores(models, w_multi, w_bert, w_lex, w_tb, thr) nlp, _ = load_spacy() header = f"""

{label}

Idioma detectado: {lang}

Puntuación combinada: {final:.3f}

Longitud: {len(text)} caracteres

""" # Detalles por modelo def block(name, d): if 'error' in d: return f"
{name}
Error: {d['error']}
" rows = [] for k,v in d.items(): if isinstance(v, float): rows.append(f"{k}: {v:.3f}") else: rows.append(f"{k}: {v}") return f"
{name}
" + "
".join(rows) + "
" details = "

📊 Resultados por método

" + "
" + block("Multilingual", models.get('multilingual', {})) + block("BERT (estrellas)", models.get('bert', {})) + block("Léxico (ES)", models.get('lexico', {})) + block("TextBlob", models.get('textblob', {})) + "
" # Resaltado léxico highlighted = highlight_words(text, nlp) highlight_html = f"""

🔎 Palabras clave detectadas

{highlighted}
""" # Lingüística resumida if nlp: doc = nlp(text) ents = "
".join([f"• {e.text} ({e.label_})" for e in list(doc.ents)[:8]]) or "—" ling = f"""

📝 Análisis lingüístico (spaCy)

Entidades detectadas:
{ents}

""" else: ling = "

spaCy no disponible (modelo es_core_news_sm no instalado)

" return header, details, highlight_html, ling # ============================== # Excel/CSV # ============================== def analyze_file(file, max_rows, text_cols_manual, w_multi, w_bert, w_lex, w_tb, thr): if file is None: return pd.DataFrame([{"Resultado":"❌ Sube un archivo .xlsx o .csv"}]) name = getattr(file, "name", "archivo") try: if name.lower().endswith(".csv"): df = pd.read_csv(file) else: df = pd.read_excel(file) except Exception as e: return pd.DataFrame([{"Error": f"❌ No pude leer el archivo: {e}"}]) # Detectar columnas de texto si no se especifican if text_cols_manual: cols = [c.strip() for c in text_cols_manual.split(",") if c.strip() in df.columns] else: cols = [] for c in df.columns: if df[c].dtype == "object": sample = df[c].dropna().astype(str).head(5).tolist() if any(len(s.split()) >= 5 for s in sample): cols.append(c) cols = cols[:2] # máximo 2 columnas por defecto if not cols: return pd.DataFrame([{"Resultado":"❌ No encontré columnas de texto (o especifica manualmente)"}]) records = [] for c in cols: for i, text in enumerate(df[c].dropna().astype(str).head(max_rows), start=1): models = model_scores(text) label, s, _ = fuse_scores(models, w_multi, w_bert, w_lex, w_tb, thr) records.append({ "Columna": c, "Fila": i, "Texto": (text[:140] + "...") if len(text) > 140 else text, "Sentimiento": label.replace("😊 ","").replace("😠 ","").replace("😐 ",""), "Score": round(s,3), "Len": len(text) }) return pd.DataFrame.from_records(records) # ============================== # UI # ============================== with gr.Blocks(theme="soft", title=APP_TITLE, css=""" #component-0 .hover\:bg-red-500:hover{ background: none } .markdown-body h1, .markdown-body h2 { margin-top:0 } """) as demo: gr.Markdown(f""" # {APP_TITLE} **Combina múltiples modelos, léxico y análisis lingüístico. Ajusta pesos y genera insights épicos.** """) with gr.Tab("📝 Texto individual"): with gr.Row(): with gr.Column(scale=5): text_in = gr.Textbox(label="Texto", lines=6, placeholder="Escribe aquí en ES/EN/FR/PT...") with gr.Accordion("⚙️ Pesos y umbral", open=False): w_multi = gr.Slider(0,1,value=0.4,step=0.05,label="Peso Multilingual") w_bert = gr.Slider(0,1,value=0.3,step=0.05,label="Peso BERT") w_lex = gr.Slider(0,1,value=0.2,step=0.05,label="Peso Léxico") w_tb = gr.Slider(0,1,value=0.1,step=0.05,label="Peso TextBlob") thr = gr.Slider(0,1,value=0.2,step=0.01,label="Umbral de neutro (|score| ≤ umbral)") btn = gr.Button("🔍 Analizar", variant="primary") gr.Examples( examples=[ ["Me encanta este producto, superó mis expectativas y lo recomiendo."], ["Pésimo servicio, llegó tarde y defectuoso. Muy decepcionado."], ["El producto cumple, pero no destaca. Está bien por el precio."], ["I absolutely love it! Great quality and fast delivery."], ["C'est un service horrible, je ne le recommande à personne."], ["O atendimento foi excelente e o produto é ótimo."] ], inputs=[text_in] ) with gr.Column(scale=5): head = gr.HTML(label="🎯 Resultado") methods = gr.HTML(label="📊 Detalles por modelo") highlights = gr.HTML(label="🔎 Palabras clave") ling = gr.HTML(label="📝 Lingüística") btn.click(analyze_text, [text_in, w_multi, w_bert, w_lex, w_tb, thr], [head, methods, highlights, ling]) text_in.submit(analyze_text, [text_in, w_multi, w_bert, w_lex, w_tb, thr], [head, methods, highlights, ling]) with gr.Tab("📈 Lote (Excel/CSV)"): with gr.Row(): with gr.Column(scale=5): f = gr.File(label="Sube .xlsx o .csv") max_rows = gr.Slider(5, 500, value=100, step=5, label="Filas máximas por columna") text_cols_manual = gr.Textbox(label="Columnas de texto (opcional, separadas por coma)") with gr.Accordion("⚙️ Pesos y umbral", open=False): w_multi2 = gr.Slider(0,1,value=0.4,step=0.05,label="Peso Multilingual") w_bert2 = gr.Slider(0,1,value=0.3,step=0.05,label="Peso BERT") w_lex2 = gr.Slider(0,1,value=0.2,step=0.05,label="Peso Léxico") w_tb2 = gr.Slider(0,1,value=0.1,step=0.05,label="Peso TextBlob") thr2 = gr.Slider(0,1,value=0.2,step=0.01,label="Umbral de neutro") btn2 = gr.Button("🚀 Analizar archivo", variant="primary") with gr.Column(scale=5): df_out = gr.Dataframe(wrap=True, label="Resultados") dl = gr.DownloadButton(label="⬇️ Descargar CSV", value=None) def _pipe(file, max_rows, text_cols_manual, w1,w2,w3,w4,thr): df = analyze_file(file, int(max_rows), text_cols_manual, w1,w2,w3,w4,thr) # generar CSV temporal try: csv = df.to_csv(index=False).encode("utf-8") return df, csv except Exception: return df, None btn2.click(_pipe, [f, max_rows, text_cols_manual, w_multi2, w_bert2, w_lex2, w_tb2, thr2], [df_out, dl]) with gr.Tab("ℹ️ Sistema & Modelos"): spacy_status = load_spacy()[1] m1_status = load_multilingual_sentiment()[1] m2_status = load_multilingual_bert()[1] gr.Markdown(f""" ### Estado de modelos - {spacy_status} - {m1_status} - {m2_status} ### Cómo mejorar precisión - Ajusta pesos según tu dominio (por ejemplo, más peso al léxico para español coloquial). - Entrena un diccionario propio con palabras frecuentes de tus clientes. - Limpia el texto (remueve spam, URLs, firmas) antes de analizar. - Para grandes volúmenes, considera un modelo fine-tuned con tus datos. """) if __name__ == "__main__": demo.launch()