▶ code
▼ output
▶ uv-logs
|
Cell: combine | 4.31s
|
Raw
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "numpy",
# "torch==2.8.0",
# "kernels-benchmark-tools",
# "matplotlib",
# ]
#
# [tool.uv.sources]
# kernels-benchmark-tools = { path = "../../../../../tools", editable = true }
# ///
from kernels_benchmark_tools.core.visuals import generate_combined_results
# Map display names to uvnote environment variables
cache_env_map = {
"HF Kernels SwiGLU": "UVNOTE_FILE_HF_KERNELS_SWIGLU_BENCHMARK",
"PyTorch SwiGLU": "UVNOTE_FILE_TORCH_SWIGLU_BENCHMARK",
# "Compiled SwiGLU": "UVNOTE_FILE_COMPILED_SWIGLU_BENCHMARK",
}
# Generate combined results with visualization
generate_combined_results(
cache_env_map=cache_env_map,
output_filename="activation.jsonl",
svg_filename="latency.svg"
)
======================================================================
LOADING BENCHMARK DATA
======================================================================
✓ HF Kernels SwiGLU : /__w/kernels-benchmarks/kernels-benchmarks/benches/activation/impls/.uvnote/cache/2775e6386f1caf1fda935a997130c06dcaf7641efb0db21560c35301fdabfd9b
✓ PyTorch SwiGLU : /__w/kernels-benchmarks/kernels-benchmarks/benches/activation/impls/.uvnote/cache/661ca38adec8893d7c284140e922da661f0afcea4aaff6a3bf48a6494ce7c6eb
✓ Found HF Kernels SwiGLU
Path: /__w/kernels-benchmarks/kernels-benchmarks/benches/activation/impls/.uvnote/cache/2775e6386f1caf1fda935a997130c06dcaf7641efb0db21560c35301fdabfd9b/activation.jsonl
✓ Found PyTorch SwiGLU
Path: /__w/kernels-benchmarks/kernels-benchmarks/benches/activation/impls/.uvnote/cache/661ca38adec8893d7c284140e922da661f0afcea4aaff6a3bf48a6494ce7c6eb/activation.jsonl
======================================================================
Summary: 2 found, 0 skipped, 0 missing
======================================================================
COMBINED BENCHMARK SUMMARY
impl wl p50(ms) ok
hf_kernels_swiglu cuda_T128_D1024 0.03 True
hf_kernels_swiglu cuda_T128_D2048 0.03 True
hf_kernels_swiglu cuda_T128_D768 0.03 True
hf_kernels_swiglu cuda_T256_D1024 0.03 True
hf_kernels_swiglu cuda_T256_D2048 0.03 True
hf_kernels_swiglu cuda_T256_D768 0.03 True
hf_kernels_swiglu cuda_T512_D1024 0.03 True
hf_kernels_swiglu cuda_T512_D2048 0.03 True
hf_kernels_swiglu cuda_T512_D768 0.03 True
torch_eager cuda_T128_D1024 0.05 True
torch_eager cuda_T128_D2048 0.05 True
torch_eager cuda_T128_D768 0.04 True
torch_eager cuda_T256_D1024 0.05 True
torch_eager cuda_T256_D2048 0.05 True
torch_eager cuda_T256_D768 0.05 True
torch_eager cuda_T512_D1024 0.05 True
torch_eager cuda_T512_D2048 0.05 True
torch_eager cuda_T512_D768 0.05 True
GENERATING COMBINED VISUALIZATION
Loaded 18 records
✓ Visualization saved as latency.svg
Saved latency.png
✓ Visualization saved as latency.svg
✓ SVG visualization ready!
ANALYSIS COMPLETE
Total implementations analyzed: 2
Implementations included:
✓ HF Kernels SwiGLU
✓ PyTorch SwiGLU
▶ UV Install Logs