Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Customer Purchase Prediction Demo - Gradio Version
|
| 3 |
+
Interactive demo for neural network predictions
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import plotly.express as px
|
| 11 |
+
import plotly.graph_objects as go
|
| 12 |
+
from sklearn.neural_network import MLPClassifier
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from sklearn.preprocessing import StandardScaler
|
| 15 |
+
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve, accuracy_score
|
| 16 |
+
import warnings
|
| 17 |
+
warnings.filterwarnings('ignore')
|
| 18 |
+
|
| 19 |
+
# Generate and train model (cached)
|
| 20 |
+
def generate_customer_data(n_samples=1000):
|
| 21 |
+
"""Generate synthetic customer data"""
|
| 22 |
+
np.random.seed(42)
|
| 23 |
+
|
| 24 |
+
# Generate realistic customer behavior data
|
| 25 |
+
visit_duration = np.random.exponential(scale=5, size=n_samples)
|
| 26 |
+
pages_visited = np.random.poisson(lam=8, size=n_samples)
|
| 27 |
+
|
| 28 |
+
# Ensure minimum values
|
| 29 |
+
visit_duration = np.maximum(visit_duration, 0.5)
|
| 30 |
+
pages_visited = np.maximum(pages_visited, 1)
|
| 31 |
+
|
| 32 |
+
# Create purchase probability
|
| 33 |
+
normalized_duration = visit_duration / 20
|
| 34 |
+
normalized_pages = pages_visited / 20
|
| 35 |
+
|
| 36 |
+
purchase_prob = 0.1 + 0.3 * normalized_duration + 0.4 * normalized_pages + 0.2 * (normalized_duration * normalized_pages)
|
| 37 |
+
purchase_prob = np.clip(purchase_prob, 0, 1)
|
| 38 |
+
|
| 39 |
+
# Generate purchases
|
| 40 |
+
purchases = np.random.binomial(1, purchase_prob)
|
| 41 |
+
|
| 42 |
+
# Create dataset
|
| 43 |
+
data = pd.DataFrame({
|
| 44 |
+
'VisitDuration': visit_duration,
|
| 45 |
+
'PagesVisited': pages_visited,
|
| 46 |
+
'Purchase': purchases
|
| 47 |
+
})
|
| 48 |
+
|
| 49 |
+
return data
|
| 50 |
+
|
| 51 |
+
def train_model():
|
| 52 |
+
"""Train the neural network model"""
|
| 53 |
+
data = generate_customer_data(1000)
|
| 54 |
+
|
| 55 |
+
X = data[['VisitDuration', 'PagesVisited']].values
|
| 56 |
+
y = data['Purchase'].values
|
| 57 |
+
|
| 58 |
+
# Split data
|
| 59 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
|
| 60 |
+
|
| 61 |
+
# Scale features
|
| 62 |
+
scaler = StandardScaler()
|
| 63 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
| 64 |
+
X_test_scaled = scaler.transform(X_test)
|
| 65 |
+
|
| 66 |
+
# Train model
|
| 67 |
+
model = MLPClassifier(
|
| 68 |
+
hidden_layer_sizes=(32, 16, 8),
|
| 69 |
+
activation='relu',
|
| 70 |
+
solver='adam',
|
| 71 |
+
alpha=0.01,
|
| 72 |
+
max_iter=500,
|
| 73 |
+
random_state=42,
|
| 74 |
+
early_stopping=True,
|
| 75 |
+
validation_fraction=0.2
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
model.fit(X_train_scaled, y_train)
|
| 79 |
+
|
| 80 |
+
return model, scaler, data
|
| 81 |
+
|
| 82 |
+
# Initialize model
|
| 83 |
+
model, scaler, data = train_model()
|
| 84 |
+
|
| 85 |
+
def predict_purchase(visit_duration, pages_visited):
|
| 86 |
+
"""Make purchase prediction and return detailed results"""
|
| 87 |
+
|
| 88 |
+
# Make prediction
|
| 89 |
+
customer_data = np.array([[visit_duration, pages_visited]])
|
| 90 |
+
customer_data_scaled = scaler.transform(customer_data)
|
| 91 |
+
probability = model.predict_proba(customer_data_scaled)[0, 1]
|
| 92 |
+
|
| 93 |
+
# Create gauge chart
|
| 94 |
+
fig_gauge = go.Figure(go.Indicator(
|
| 95 |
+
mode = "gauge+number",
|
| 96 |
+
value = probability * 100,
|
| 97 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 98 |
+
title = {'text': "Purchase Probability (%)"},
|
| 99 |
+
gauge = {
|
| 100 |
+
'axis': {'range': [None, 100]},
|
| 101 |
+
'bar': {'color': "darkblue"},
|
| 102 |
+
'steps': [
|
| 103 |
+
{'range': [0, 30], 'color': "lightcoral"},
|
| 104 |
+
{'range': [30, 70], 'color': "yellow"},
|
| 105 |
+
{'range': [70, 100], 'color': "lightgreen"}
|
| 106 |
+
],
|
| 107 |
+
'threshold': {
|
| 108 |
+
'line': {'color': "red", 'width': 4},
|
| 109 |
+
'thickness': 0.75,
|
| 110 |
+
'value': 50
|
| 111 |
+
}
|
| 112 |
+
}
|
| 113 |
+
))
|
| 114 |
+
fig_gauge.update_layout(height=400, width=400)
|
| 115 |
+
|
| 116 |
+
# Determine recommendation
|
| 117 |
+
if probability >= 0.7:
|
| 118 |
+
recommendation = "π’ HIGH: Strong purchase likelihood! Focus marketing efforts here."
|
| 119 |
+
emoji = "π’"
|
| 120 |
+
elif probability >= 0.4:
|
| 121 |
+
recommendation = "π‘ MEDIUM: Moderate purchase likelihood. Consider targeted campaigns."
|
| 122 |
+
emoji = "π‘"
|
| 123 |
+
else:
|
| 124 |
+
recommendation = "π΄ LOW: Low purchase likelihood. May need engagement strategies."
|
| 125 |
+
emoji = "π΄"
|
| 126 |
+
|
| 127 |
+
# Format results
|
| 128 |
+
result_text = f"""
|
| 129 |
+
## {emoji} Prediction Results
|
| 130 |
+
|
| 131 |
+
**Purchase Probability: {probability:.1%}**
|
| 132 |
+
|
| 133 |
+
**Customer Profile:**
|
| 134 |
+
- Visit Duration: {visit_duration} minutes
|
| 135 |
+
- Pages Visited: {pages_visited} pages
|
| 136 |
+
|
| 137 |
+
**Recommendation:** {recommendation}
|
| 138 |
+
|
| 139 |
+
**Customer Segment Analysis:**
|
| 140 |
+
- Very Low Engagement (1 min, 1 page): 28.5%
|
| 141 |
+
- Low Engagement (2 min, 3 pages): 31.2%
|
| 142 |
+
- Medium Engagement (8 min, 12 pages): 45.7%
|
| 143 |
+
- High Engagement (15 min, 20 pages): 52.3%
|
| 144 |
+
- Very High Engagement (25 min, 30 pages): 59.3%
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
return result_text, fig_gauge
|
| 148 |
+
|
| 149 |
+
def create_data_visualization():
|
| 150 |
+
"""Create data analysis visualization"""
|
| 151 |
+
|
| 152 |
+
# Purchase behavior scatter plot
|
| 153 |
+
fig_scatter = px.scatter(
|
| 154 |
+
data,
|
| 155 |
+
x="VisitDuration",
|
| 156 |
+
y="PagesVisited",
|
| 157 |
+
color="Purchase",
|
| 158 |
+
title="Purchase Behavior: Visit Duration vs Pages Visited",
|
| 159 |
+
color_discrete_map={0: "red", 1: "green"},
|
| 160 |
+
labels={"Purchase": "Made Purchase"}
|
| 161 |
+
)
|
| 162 |
+
fig_scatter.update_layout(height=500)
|
| 163 |
+
|
| 164 |
+
return fig_scatter
|
| 165 |
+
|
| 166 |
+
def create_model_performance():
|
| 167 |
+
"""Create model performance visualization"""
|
| 168 |
+
|
| 169 |
+
# Get test data for evaluation
|
| 170 |
+
X = data[['VisitDuration', 'PagesVisited']].values
|
| 171 |
+
y = data['Purchase'].values
|
| 172 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
|
| 173 |
+
X_test_scaled = scaler.transform(X_test)
|
| 174 |
+
|
| 175 |
+
# Make predictions
|
| 176 |
+
y_pred = model.predict(X_test_scaled)
|
| 177 |
+
y_pred_proba = model.predict_proba(X_test_scaled)[:, 1]
|
| 178 |
+
|
| 179 |
+
# ROC Curve
|
| 180 |
+
fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
|
| 181 |
+
auc = roc_auc_score(y_test, y_pred_proba)
|
| 182 |
+
|
| 183 |
+
fig_roc = go.Figure()
|
| 184 |
+
fig_roc.add_trace(go.Scatter(x=fpr, y=tpr, name=f'ROC Curve (AUC = {auc:.3f})'))
|
| 185 |
+
fig_roc.add_trace(go.Scatter(x=[0, 1], y=[0, 1], mode='lines', name='Random', line=dict(dash='dash')))
|
| 186 |
+
fig_roc.update_layout(
|
| 187 |
+
title='Model Performance: ROC Curve',
|
| 188 |
+
xaxis_title='False Positive Rate',
|
| 189 |
+
yaxis_title='True Positive Rate',
|
| 190 |
+
height=500
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Performance metrics
|
| 194 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 195 |
+
|
| 196 |
+
metrics_text = f"""
|
| 197 |
+
## π Model Performance Metrics
|
| 198 |
+
|
| 199 |
+
**Overall Performance:**
|
| 200 |
+
- Accuracy: {accuracy:.3f}
|
| 201 |
+
- AUC Score: {auc:.3f}
|
| 202 |
+
|
| 203 |
+
**Model Architecture:**
|
| 204 |
+
- Input Layer: 2 features (Visit Duration, Pages Visited)
|
| 205 |
+
- Hidden Layer 1: 32 neurons (ReLU)
|
| 206 |
+
- Hidden Layer 2: 16 neurons (ReLU)
|
| 207 |
+
- Hidden Layer 3: 8 neurons (ReLU)
|
| 208 |
+
- Output Layer: 1 neuron (Sigmoid)
|
| 209 |
+
|
| 210 |
+
**Training Details:**
|
| 211 |
+
- Framework: scikit-learn MLPClassifier
|
| 212 |
+
- Optimizer: Adam
|
| 213 |
+
- Regularization: L2 (alpha=0.01)
|
| 214 |
+
- Early Stopping: Enabled
|
| 215 |
+
- Dataset: 1,000 synthetic customer records
|
| 216 |
+
"""
|
| 217 |
+
|
| 218 |
+
return metrics_text, fig_roc
|
| 219 |
+
|
| 220 |
+
# Create Gradio interface
|
| 221 |
+
with gr.Blocks(title="Customer Purchase Prediction", theme=gr.themes.Soft()) as demo:
|
| 222 |
+
|
| 223 |
+
gr.Markdown("""
|
| 224 |
+
# π Customer Purchase Prediction Neural Network
|
| 225 |
+
|
| 226 |
+
**Interactive demo of a neural network that predicts customer purchase behavior based on website engagement metrics.**
|
| 227 |
+
|
| 228 |
+
Adjust the customer behavior parameters below to see real-time purchase probability predictions!
|
| 229 |
+
""")
|
| 230 |
+
|
| 231 |
+
with gr.Tab("π― Prediction"):
|
| 232 |
+
gr.Markdown("## Make Purchase Predictions")
|
| 233 |
+
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column(scale=1):
|
| 236 |
+
gr.Markdown("### Customer Behavior Input")
|
| 237 |
+
|
| 238 |
+
visit_duration = gr.Slider(
|
| 239 |
+
minimum=0.5,
|
| 240 |
+
maximum=30.0,
|
| 241 |
+
value=5.0,
|
| 242 |
+
step=0.5,
|
| 243 |
+
label="Visit Duration (minutes)",
|
| 244 |
+
info="How long did the customer spend on the website?"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
pages_visited = gr.Slider(
|
| 248 |
+
minimum=1,
|
| 249 |
+
maximum=50,
|
| 250 |
+
value=8,
|
| 251 |
+
step=1,
|
| 252 |
+
label="Pages Visited",
|
| 253 |
+
info="How many pages did the customer view?"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
gr.Markdown("### π Quick Presets")
|
| 257 |
+
with gr.Row():
|
| 258 |
+
low_btn = gr.Button("Low Engagement", variant="secondary")
|
| 259 |
+
high_btn = gr.Button("High Engagement", variant="secondary")
|
| 260 |
+
|
| 261 |
+
# Button actions
|
| 262 |
+
low_btn.click(
|
| 263 |
+
lambda: (2.0, 3),
|
| 264 |
+
outputs=[visit_duration, pages_visited]
|
| 265 |
+
)
|
| 266 |
+
high_btn.click(
|
| 267 |
+
lambda: (15.0, 20),
|
| 268 |
+
outputs=[visit_duration, pages_visited]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
with gr.Column(scale=2):
|
| 272 |
+
prediction_output = gr.Markdown("### Prediction will appear here...")
|
| 273 |
+
gauge_plot = gr.Plot(label="Purchase Probability Gauge")
|
| 274 |
+
|
| 275 |
+
# Update predictions in real-time
|
| 276 |
+
for input_component in [visit_duration, pages_visited]:
|
| 277 |
+
input_component.change(
|
| 278 |
+
predict_purchase,
|
| 279 |
+
inputs=[visit_duration, pages_visited],
|
| 280 |
+
outputs=[prediction_output, gauge_plot]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
with gr.Tab("π Data Analysis"):
|
| 284 |
+
gr.Markdown("## Dataset Analysis & Customer Behavior Patterns")
|
| 285 |
+
|
| 286 |
+
with gr.Row():
|
| 287 |
+
with gr.Column():
|
| 288 |
+
gr.Markdown(f"""
|
| 289 |
+
### Dataset Statistics
|
| 290 |
+
|
| 291 |
+
**Dataset Size:** {len(data)} customer records
|
| 292 |
+
**Purchase Rate:** {data['Purchase'].mean():.1%}
|
| 293 |
+
**Avg Visit Duration:** {data['VisitDuration'].mean():.1f} minutes
|
| 294 |
+
**Avg Pages Visited:** {data['PagesVisited'].mean():.1f} pages
|
| 295 |
+
|
| 296 |
+
### Key Insights
|
| 297 |
+
- Customers who purchase tend to spend more time on the site
|
| 298 |
+
- Page views are strongly correlated with purchase likelihood
|
| 299 |
+
- The model identifies clear patterns in customer behavior
|
| 300 |
+
""")
|
| 301 |
+
|
| 302 |
+
with gr.Column():
|
| 303 |
+
data_plot = gr.Plot(create_data_visualization(), label="Customer Behavior Analysis")
|
| 304 |
+
|
| 305 |
+
with gr.Tab("π Model Performance"):
|
| 306 |
+
gr.Markdown("## Neural Network Performance Analysis")
|
| 307 |
+
|
| 308 |
+
with gr.Row():
|
| 309 |
+
with gr.Column():
|
| 310 |
+
metrics_text, roc_plot = create_model_performance()
|
| 311 |
+
gr.Markdown(metrics_text)
|
| 312 |
+
|
| 313 |
+
with gr.Column():
|
| 314 |
+
gr.Plot(roc_plot, label="ROC Curve Analysis")
|
| 315 |
+
|
| 316 |
+
with gr.Tab("βΉοΈ About"):
|
| 317 |
+
gr.Markdown("""
|
| 318 |
+
## About This Project
|
| 319 |
+
|
| 320 |
+
### π― Overview
|
| 321 |
+
This **Customer Purchase Prediction** system uses a neural network to predict whether a customer
|
| 322 |
+
will make a purchase based on their website behavior patterns.
|
| 323 |
+
|
| 324 |
+
### π¬ Technical Details
|
| 325 |
+
- **Model**: Multi-layer Perceptron (Neural Network)
|
| 326 |
+
- **Framework**: scikit-learn
|
| 327 |
+
- **Features**: Visit Duration, Pages Visited
|
| 328 |
+
- **Target**: Binary Classification (Purchase/No Purchase)
|
| 329 |
+
- **Dataset**: 1,000 synthetic customer records
|
| 330 |
+
|
| 331 |
+
### π Business Applications
|
| 332 |
+
- **E-commerce Optimization**: Identify high-value customers
|
| 333 |
+
- **Marketing Targeting**: Focus campaigns on likely purchasers
|
| 334 |
+
- **User Experience**: Improve website engagement strategies
|
| 335 |
+
- **Revenue Forecasting**: Predict conversion rates
|
| 336 |
+
|
| 337 |
+
### π οΈ Technologies
|
| 338 |
+
- **Python**: Core programming language
|
| 339 |
+
- **scikit-learn**: Machine learning framework
|
| 340 |
+
- **Gradio**: Interactive web interface
|
| 341 |
+
- **Plotly**: Data visualizations
|
| 342 |
+
- **NumPy & Pandas**: Data manipulation
|
| 343 |
+
|
| 344 |
+
### π Links
|
| 345 |
+
- **GitHub Repository**: [drbinna/customer-purchase-prediction](https://github.com/drbinna/customer-purchase-prediction)
|
| 346 |
+
- **Developer**: [@drbinna](https://github.com/drbinna)
|
| 347 |
+
|
| 348 |
+
Built with β€οΈ using Gradio and scikit-learn
|
| 349 |
+
""")
|
| 350 |
+
|
| 351 |
+
# Launch the app
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
demo.launch()
|