Spaces:
Sleeping
Sleeping
danielhshi8224
commited on
Commit
Β·
879e1cd
1
Parent(s):
c458c3e
add object detection
Browse files- app.py +198 -112
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,115 +1,4 @@
|
|
| 1 |
-
#
|
| 2 |
-
# import torch
|
| 3 |
-
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
-
# from PIL import Image
|
| 5 |
-
# import os
|
| 6 |
-
|
| 7 |
-
# # Get model path (Windows compatible)
|
| 8 |
-
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 9 |
-
# MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
| 10 |
-
|
| 11 |
-
# # Try different possible filenames
|
| 12 |
-
# # possible_names = ['ConvNextmodel.pth', 'convnextmodel.pth', 'ConvNext_model.pth']
|
| 13 |
-
# # model_path = None
|
| 14 |
-
|
| 15 |
-
# # for name in possible_names:
|
| 16 |
-
# # test_path = os.path.join(BASE_DIR, name)
|
| 17 |
-
# # if os.path.exists(test_path):
|
| 18 |
-
# # model_path = test_path
|
| 19 |
-
# # print(f"β Found model: {name}")
|
| 20 |
-
# # break
|
| 21 |
-
|
| 22 |
-
# # if model_path is None:
|
| 23 |
-
# # raise FileNotFoundError(f"Could not find model file. Tried: {possible_names}")
|
| 24 |
-
|
| 25 |
-
# # Species categories (7 classes)
|
| 26 |
-
# SPECIES_CATEGORIES = [
|
| 27 |
-
# 'Eel',
|
| 28 |
-
# 'Scallop',
|
| 29 |
-
# 'Crab',
|
| 30 |
-
# 'Flatfish',
|
| 31 |
-
# 'Roundfish',
|
| 32 |
-
# 'Skate',
|
| 33 |
-
# 'Whelk'
|
| 34 |
-
# ]
|
| 35 |
-
|
| 36 |
-
# # Load model
|
| 37 |
-
# print(f"Loading model from: {MODEL_ID}")
|
| 38 |
-
# # model = AutoModelForImageClassification.from_pretrained(
|
| 39 |
-
# # 'facebook/convnext-tiny-224',
|
| 40 |
-
# # num_labels=7,
|
| 41 |
-
# # ignore_mismatched_sizes=True
|
| 42 |
-
# # )
|
| 43 |
-
# processor=AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224')
|
| 44 |
-
# model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 45 |
-
|
| 46 |
-
# # Load weights
|
| 47 |
-
# # checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
|
| 48 |
-
# # if isinstance(checkpoint, dict):
|
| 49 |
-
# # if 'model' in checkpoint:
|
| 50 |
-
# # checkpoint = checkpoint['model']
|
| 51 |
-
# # elif 'state_dict' in checkpoint:
|
| 52 |
-
# # checkpoint = checkpoint['state_dict']
|
| 53 |
-
|
| 54 |
-
# # model.load_state_dict(checkpoint, strict=False)
|
| 55 |
-
# # model.eval()
|
| 56 |
-
|
| 57 |
-
# # Load processor
|
| 58 |
-
# # processor = AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224')
|
| 59 |
-
# # print("β Model loaded successfully!")
|
| 60 |
-
|
| 61 |
-
# def classify_image(image):
|
| 62 |
-
# """
|
| 63 |
-
# Classify a benthic species image.
|
| 64 |
-
|
| 65 |
-
# Args:
|
| 66 |
-
# image: PIL Image or numpy array
|
| 67 |
-
|
| 68 |
-
# Returns:
|
| 69 |
-
# dict: Predictions with species names and confidence scores
|
| 70 |
-
# """
|
| 71 |
-
# # Convert to PIL if needed
|
| 72 |
-
# if not isinstance(image, Image.Image):
|
| 73 |
-
# image = Image.fromarray(image).convert('RGB')
|
| 74 |
-
|
| 75 |
-
# # Preprocess
|
| 76 |
-
# inputs = processor(images=image, return_tensors="pt")
|
| 77 |
-
|
| 78 |
-
# # Predict
|
| 79 |
-
# with torch.no_grad():
|
| 80 |
-
# outputs = model(**inputs)
|
| 81 |
-
# logits = outputs.logits
|
| 82 |
-
# probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 83 |
-
|
| 84 |
-
# # Create results dictionary for Gradio
|
| 85 |
-
# results = {}
|
| 86 |
-
# for idx, prob in enumerate(probabilities[0]):
|
| 87 |
-
# results[SPECIES_CATEGORIES[idx]] = float(prob)
|
| 88 |
-
|
| 89 |
-
# return results
|
| 90 |
-
|
| 91 |
-
# # Create Gradio interface
|
| 92 |
-
# demo = gr.Interface(
|
| 93 |
-
# fn=classify_image,
|
| 94 |
-
# inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 95 |
-
# outputs=gr.Label(num_top_classes=7, label="Species Classification"),
|
| 96 |
-
# title="π BenthicAI - Benthic Species Classifier",
|
| 97 |
-
# description="Upload an image of a benthic organism to classify it into one of 7 species categories. Built with ConvNeXT transformer model.",
|
| 98 |
-
# examples=[
|
| 99 |
-
# [os.path.join("examples", "eel.jpg")],
|
| 100 |
-
# [os.path.join("examples", "scallop.jpg")],
|
| 101 |
-
# [os.path.join("examples", "crab.jpg")],
|
| 102 |
-
# ] if os.path.exists("examples") else None,
|
| 103 |
-
# theme=gr.themes.Soft(),
|
| 104 |
-
# allow_flagging="never"
|
| 105 |
-
# )
|
| 106 |
-
|
| 107 |
-
# if __name__ == "__main__":
|
| 108 |
-
# demo.launch(
|
| 109 |
-
# server_name="0.0.0.0",
|
| 110 |
-
# server_port=7860,
|
| 111 |
-
# share=True # Set to True to get a public URL
|
| 112 |
-
# )
|
| 113 |
import gradio as gr
|
| 114 |
import torch
|
| 115 |
import torch.nn.functional as F
|
|
@@ -118,6 +7,13 @@ from PIL import Image
|
|
| 118 |
import os
|
| 119 |
import csv
|
| 120 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 123 |
MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
|
@@ -221,6 +117,179 @@ def classify_images_batch(files):
|
|
| 221 |
|
| 222 |
return gallery, table_rows, csv_path
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# ---------- UI ----------
|
| 225 |
single = gr.Interface(
|
| 226 |
fn=classify_image,
|
|
@@ -247,6 +316,23 @@ batch = gr.Interface(
|
|
| 247 |
)
|
| 248 |
|
| 249 |
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
if __name__ == "__main__":
|
| 252 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 1 |
+
#Main Gradio app ith image classification and object detection tabs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
|
|
|
| 7 |
import os
|
| 8 |
import csv
|
| 9 |
import tempfile
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from ultralytics import YOLO
|
| 12 |
+
# ultralytics YOLO import (for object detection)
|
| 13 |
+
try:
|
| 14 |
+
from ultralytics import YOLO
|
| 15 |
+
except Exception:
|
| 16 |
+
YOLO = None
|
| 17 |
|
| 18 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 19 |
MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
|
|
|
| 117 |
|
| 118 |
return gallery, table_rows, csv_path
|
| 119 |
|
| 120 |
+
|
| 121 |
+
# ---------- NEW: YOLO object detection for multi-image upload ----------
|
| 122 |
+
YOLO_WEIGHTS = os.path.join(BASE_DIR, "yolo11_best.pt")
|
| 123 |
+
_yolo_model = None
|
| 124 |
+
def _load_yolo():
|
| 125 |
+
global _yolo_model
|
| 126 |
+
if _yolo_model is not None:
|
| 127 |
+
return _yolo_model
|
| 128 |
+
if YOLO is None:
|
| 129 |
+
raise RuntimeError("ultralytics package not installed. Please install 'ultralytics'.")
|
| 130 |
+
if not os.path.exists(YOLO_WEIGHTS):
|
| 131 |
+
# Try current directory too
|
| 132 |
+
alt = Path.cwd() / "yolo11_best.pt"
|
| 133 |
+
if alt.exists():
|
| 134 |
+
model_path = str(alt)
|
| 135 |
+
else:
|
| 136 |
+
raise FileNotFoundError(f"YOLO weights not found at {YOLO_WEIGHTS}. Place yolo11_best.pt in project root.")
|
| 137 |
+
else:
|
| 138 |
+
model_path = YOLO_WEIGHTS
|
| 139 |
+
|
| 140 |
+
_yolo_model = YOLO(model_path)
|
| 141 |
+
return _yolo_model
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def detect_objects_batch(files, iou=0.25, conf=0.25):
|
| 145 |
+
"""
|
| 146 |
+
Run YOLO detection on multiple images.
|
| 147 |
+
Returns: gallery of annotated images, dataframe rows, csv file path
|
| 148 |
+
"""
|
| 149 |
+
if YOLO is None:
|
| 150 |
+
return [], [], None
|
| 151 |
+
|
| 152 |
+
if not files:
|
| 153 |
+
return [], [], None
|
| 154 |
+
|
| 155 |
+
# Load model
|
| 156 |
+
try:
|
| 157 |
+
ymodel = _load_yolo()
|
| 158 |
+
except Exception as e:
|
| 159 |
+
print("YOLO load error:", e)
|
| 160 |
+
return [], [], None
|
| 161 |
+
|
| 162 |
+
annotated_paths = []
|
| 163 |
+
table_rows = []
|
| 164 |
+
gallery = []
|
| 165 |
+
|
| 166 |
+
for f in files[:MAX_BATCH]:
|
| 167 |
+
path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
| 168 |
+
try:
|
| 169 |
+
# Run predict; returns a Results object list
|
| 170 |
+
results = ymodel.predict(source=path, conf=conf, iou=iou, imgsz=640, verbose=False)
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"Detection failed for {path}:", e)
|
| 173 |
+
continue
|
| 174 |
+
|
| 175 |
+
# results is list-like; take first
|
| 176 |
+
res = results[0]
|
| 177 |
+
|
| 178 |
+
# Prepare annotation image using res.plot() so boxes+confidences are drawn
|
| 179 |
+
ann_path = None
|
| 180 |
+
try:
|
| 181 |
+
ann_img = res.plot() # returns numpy array with annotations
|
| 182 |
+
from PIL import Image as PILImage
|
| 183 |
+
ann_pil = PILImage.fromarray(ann_img)
|
| 184 |
+
out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 185 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 186 |
+
ann_filename = os.path.splitext(os.path.basename(path))[0] + "_annotated.jpg"
|
| 187 |
+
ann_path = os.path.join(out_dir, ann_filename)
|
| 188 |
+
ann_pil.save(ann_path)
|
| 189 |
+
except Exception:
|
| 190 |
+
# Fallback to ultralytics save if plot() isn't available
|
| 191 |
+
try:
|
| 192 |
+
out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 193 |
+
res.save(save_dir=out_dir)
|
| 194 |
+
saved_files = res.files if hasattr(res, 'files') else []
|
| 195 |
+
ann_path = saved_files[0] if saved_files else None
|
| 196 |
+
except Exception:
|
| 197 |
+
ann_path = None
|
| 198 |
+
|
| 199 |
+
# Build table rows from detections
|
| 200 |
+
boxes = res.boxes if hasattr(res, 'boxes') else None
|
| 201 |
+
if boxes is None or len(boxes) == 0:
|
| 202 |
+
table_rows.append([os.path.basename(path), 0, "", "", ""])
|
| 203 |
+
if ann_path and os.path.exists(ann_path):
|
| 204 |
+
gallery.append((Image.open(ann_path).convert('RGB'), f"{os.path.basename(path)}\nNo detections"))
|
| 205 |
+
else:
|
| 206 |
+
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\nNo detections"))
|
| 207 |
+
continue
|
| 208 |
+
|
| 209 |
+
det_labels = []
|
| 210 |
+
det_scores = []
|
| 211 |
+
det_boxes = []
|
| 212 |
+
for box in boxes:
|
| 213 |
+
# box.cls, box.conf, box.xyxy
|
| 214 |
+
cls = int(box.cls.cpu().item()) if hasattr(box, 'cls') else None
|
| 215 |
+
# use .item() to extract scalar and avoid numpy deprecation warnings
|
| 216 |
+
if hasattr(box, 'conf'):
|
| 217 |
+
try:
|
| 218 |
+
confscore = float(box.conf.cpu().item())
|
| 219 |
+
except Exception:
|
| 220 |
+
try:
|
| 221 |
+
confscore = float(box.conf.item())
|
| 222 |
+
except Exception:
|
| 223 |
+
confscore = None
|
| 224 |
+
else:
|
| 225 |
+
confscore = None
|
| 226 |
+
|
| 227 |
+
# extract xyxy coords; box.xyxy may be shape (1,4) -> nested list after .tolist()
|
| 228 |
+
coords = []
|
| 229 |
+
if hasattr(box, 'xyxy'):
|
| 230 |
+
try:
|
| 231 |
+
arr = box.xyxy.cpu().numpy()
|
| 232 |
+
# handle nested shape (1,4) or (4,)
|
| 233 |
+
if getattr(arr, 'ndim', None) == 2 and arr.shape[0] == 1:
|
| 234 |
+
coords = arr[0].tolist()
|
| 235 |
+
elif getattr(arr, 'ndim', None) == 1:
|
| 236 |
+
coords = arr.tolist()
|
| 237 |
+
else:
|
| 238 |
+
coords = arr.reshape(-1).tolist()
|
| 239 |
+
except Exception:
|
| 240 |
+
# fallback: try to call tolist()
|
| 241 |
+
try:
|
| 242 |
+
coords = box.xyxy.tolist()
|
| 243 |
+
except Exception:
|
| 244 |
+
coords = []
|
| 245 |
+
|
| 246 |
+
# append detection info
|
| 247 |
+
det_labels.append(ymodel.names.get(cls, str(cls)) if cls is not None else "")
|
| 248 |
+
det_scores.append(round(confscore, 4) if confscore is not None else "")
|
| 249 |
+
# round and store coords
|
| 250 |
+
try:
|
| 251 |
+
det_boxes.append([round(float(x), 2) for x in coords])
|
| 252 |
+
except Exception:
|
| 253 |
+
# fallback: store raw repr
|
| 254 |
+
det_boxes.append([str(coords)])
|
| 255 |
+
|
| 256 |
+
# create readable label:confidence pairs
|
| 257 |
+
label_conf_pairs = [f"{l}:{s}" for l, s in zip(det_labels, det_scores)]
|
| 258 |
+
boxes_repr = ["[" + ", ".join(map(str, b)) + "]" for b in det_boxes]
|
| 259 |
+
table_rows.append([
|
| 260 |
+
os.path.basename(path),
|
| 261 |
+
len(det_labels),
|
| 262 |
+
", ".join(label_conf_pairs),
|
| 263 |
+
", ".join(boxes_repr),
|
| 264 |
+
"; ".join([str(b) for b in det_boxes])
|
| 265 |
+
])
|
| 266 |
+
|
| 267 |
+
# Use annotated image if exists
|
| 268 |
+
if ann_path and os.path.exists(ann_path):
|
| 269 |
+
try:
|
| 270 |
+
gallery.append((Image.open(ann_path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 271 |
+
except Exception:
|
| 272 |
+
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 273 |
+
else:
|
| 274 |
+
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 275 |
+
|
| 276 |
+
# write CSV
|
| 277 |
+
csv_path = None
|
| 278 |
+
try:
|
| 279 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", prefix="yolo_preds_", dir=BASE_DIR, mode="w", newline='', encoding='utf-8')
|
| 280 |
+
writer = csv.writer(tmp)
|
| 281 |
+
writer.writerow(["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"])
|
| 282 |
+
for r in table_rows:
|
| 283 |
+
writer.writerow(r)
|
| 284 |
+
tmp.flush()
|
| 285 |
+
tmp.close()
|
| 286 |
+
csv_path = tmp.name
|
| 287 |
+
except Exception as e:
|
| 288 |
+
print("Failed to write CSV:", e)
|
| 289 |
+
csv_path = None
|
| 290 |
+
|
| 291 |
+
return gallery, table_rows, csv_path
|
| 292 |
+
|
| 293 |
# ---------- UI ----------
|
| 294 |
single = gr.Interface(
|
| 295 |
fn=classify_image,
|
|
|
|
| 316 |
)
|
| 317 |
|
| 318 |
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
|
| 319 |
+
print(YOLO==None, flush=True)
|
| 320 |
+
# Add Object Detection tab if ultralytics available
|
| 321 |
+
if YOLO is not None:
|
| 322 |
+
detection_iface = gr.Interface(
|
| 323 |
+
fn=detect_objects_batch,
|
| 324 |
+
inputs=[gr.Files(label="Upload images for detection (max 10)"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="conf threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="IOU threshold")],
|
| 325 |
+
outputs=[
|
| 326 |
+
gr.Gallery(label="Detections (annotated)", height=500, rows=3),
|
| 327 |
+
gr.Dataframe(headers=["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"], label="Detection Table"),
|
| 328 |
+
gr.File(label="Download CSV")
|
| 329 |
+
],
|
| 330 |
+
title="π BenthicAI - Object Detection",
|
| 331 |
+
description="Run YOLO object detection on multiple images. Requires 'yolo11_best.pt' in project root."
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# extend tabs
|
| 335 |
+
demo = gr.TabbedInterface([single, batch, detection_iface], ["Single", "Batch", "Detection"])
|
| 336 |
|
| 337 |
if __name__ == "__main__":
|
| 338 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ torch
|
|
| 2 |
torchvision
|
| 3 |
transformers
|
| 4 |
gradio
|
| 5 |
-
Pillow
|
|
|
|
|
|
| 2 |
torchvision
|
| 3 |
transformers
|
| 4 |
gradio
|
| 5 |
+
Pillow
|
| 6 |
+
ultralytics
|