Spaces:
Sleeping
Sleeping
danielhshi8224
commited on
Commit
Β·
e322980
1
Parent(s):
c5564c5
standalone cls
Browse files
app.py
CHANGED
|
@@ -1,34 +1,261 @@
|
|
| 1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 6 |
from PIL import Image
|
| 7 |
-
import os
|
| 8 |
-
import csv
|
| 9 |
-
import tempfile
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
from ultralytics import YOLO
|
| 12 |
-
# ultralytics YOLO import (for object detection)
|
| 13 |
-
try:
|
| 14 |
-
from ultralytics import YOLO
|
| 15 |
-
except Exception:
|
| 16 |
-
YOLO = None
|
| 17 |
|
| 18 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 19 |
-
MODEL_ID = "dshi01/convnext-tiny-224-7clss"
|
|
|
|
| 20 |
|
| 21 |
-
print(f"Loading model
|
| 22 |
-
processor = AutoImageProcessor.from_pretrained(
|
| 23 |
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 24 |
model.eval()
|
| 25 |
|
| 26 |
-
#
|
| 27 |
ID2LABEL = [
|
| 28 |
model.config.id2label.get(str(i), model.config.id2label.get(i, f"Label_{i}"))
|
| 29 |
for i in range(model.config.num_labels)
|
| 30 |
]
|
|
|
|
| 31 |
def classify_image(image):
|
|
|
|
| 32 |
if not isinstance(image, Image.Image):
|
| 33 |
image = Image.fromarray(image).convert("RGB")
|
| 34 |
|
|
@@ -39,23 +266,19 @@ def classify_image(image):
|
|
| 39 |
|
| 40 |
return {ID2LABEL[i]: float(p) for i, p in enumerate(probs)}
|
| 41 |
|
| 42 |
-
# ---------- NEW: batch classify up to 10 images ----------
|
| 43 |
MAX_BATCH = 10
|
| 44 |
|
| 45 |
def classify_images_batch(files):
|
| 46 |
"""
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
- gallery: list of (image, caption)
|
| 50 |
-
- table: list of rows for Dataframe
|
| 51 |
"""
|
| 52 |
if not files:
|
| 53 |
return [], [], None
|
| 54 |
|
| 55 |
-
# Keep at most 10
|
| 56 |
files = files[:MAX_BATCH]
|
| 57 |
|
| 58 |
-
# Load
|
| 59 |
pil_images, names = [], []
|
| 60 |
for f in files:
|
| 61 |
path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
|
@@ -64,19 +287,16 @@ def classify_images_batch(files):
|
|
| 64 |
pil_images.append(img)
|
| 65 |
names.append(os.path.basename(path))
|
| 66 |
except Exception:
|
| 67 |
-
# Skip unreadable file
|
| 68 |
continue
|
| 69 |
|
| 70 |
if not pil_images:
|
| 71 |
return [], [], None
|
| 72 |
|
| 73 |
-
# Batch preprocess + forward
|
| 74 |
inputs = processor(images=pil_images, return_tensors="pt")
|
| 75 |
with torch.no_grad():
|
| 76 |
logits = model(**inputs).logits
|
| 77 |
probs = F.softmax(logits, dim=1)
|
| 78 |
|
| 79 |
-
# Build outputs
|
| 80 |
gallery = []
|
| 81 |
table_rows = [] # [filename, top1_label, top1_conf, top3_labels, top3_confs]
|
| 82 |
|
|
@@ -85,7 +305,6 @@ def classify_images_batch(files):
|
|
| 85 |
top_idxs = sorted(range(len(p)), key=lambda i: p[i], reverse=True)[:3]
|
| 86 |
top1 = top_idxs[0]
|
| 87 |
caption = f"{ID2LABEL[top1]} ({p[top1]:.2%})"
|
| 88 |
-
|
| 89 |
gallery.append((img, f"{fname}\n{caption}"))
|
| 90 |
|
| 91 |
top3_labels = [ID2LABEL[i] for i in top_idxs]
|
|
@@ -101,191 +320,17 @@ def classify_images_batch(files):
|
|
| 101 |
# Create CSV for download
|
| 102 |
csv_path = None
|
| 103 |
try:
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
writer = csv.writer(tmp)
|
| 107 |
-
# headers
|
| 108 |
writer.writerow(["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"])
|
| 109 |
for row in table_rows:
|
| 110 |
writer.writerow(row)
|
| 111 |
-
tmp.flush()
|
| 112 |
-
tmp.close()
|
| 113 |
csv_path = tmp.name
|
| 114 |
except Exception:
|
| 115 |
-
# If CSV can't be created, return None for the file but keep other outputs
|
| 116 |
-
csv_path = None
|
| 117 |
-
|
| 118 |
-
return gallery, table_rows, csv_path
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# ---------- NEW: YOLO object detection for multi-image upload ----------
|
| 122 |
-
YOLO_WEIGHTS = os.path.join(BASE_DIR, "yolo11_best.pt")
|
| 123 |
-
_yolo_model = None
|
| 124 |
-
def _load_yolo():
|
| 125 |
-
global _yolo_model
|
| 126 |
-
if _yolo_model is not None:
|
| 127 |
-
return _yolo_model
|
| 128 |
-
if YOLO is None:
|
| 129 |
-
raise RuntimeError("ultralytics package not installed. Please install 'ultralytics'.")
|
| 130 |
-
if not os.path.exists(YOLO_WEIGHTS):
|
| 131 |
-
# Try current directory too
|
| 132 |
-
alt = Path.cwd() / "yolo11_best.pt"
|
| 133 |
-
if alt.exists():
|
| 134 |
-
model_path = str(alt)
|
| 135 |
-
else:
|
| 136 |
-
raise FileNotFoundError(f"YOLO weights not found at {YOLO_WEIGHTS}. Place yolo11_best.pt in project root.")
|
| 137 |
-
else:
|
| 138 |
-
model_path = YOLO_WEIGHTS
|
| 139 |
-
|
| 140 |
-
_yolo_model = YOLO(model_path)
|
| 141 |
-
return _yolo_model
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def detect_objects_batch(files, iou=0.25, conf=0.25):
|
| 145 |
-
"""
|
| 146 |
-
Run YOLO detection on multiple images.
|
| 147 |
-
Returns: gallery of annotated images, dataframe rows, csv file path
|
| 148 |
-
"""
|
| 149 |
-
if YOLO is None:
|
| 150 |
-
return [], [], None
|
| 151 |
-
|
| 152 |
-
if not files:
|
| 153 |
-
return [], [], None
|
| 154 |
-
|
| 155 |
-
# Load model
|
| 156 |
-
try:
|
| 157 |
-
ymodel = _load_yolo()
|
| 158 |
-
except Exception as e:
|
| 159 |
-
print("YOLO load error:", e)
|
| 160 |
-
return [], [], None
|
| 161 |
-
|
| 162 |
-
annotated_paths = []
|
| 163 |
-
table_rows = []
|
| 164 |
-
gallery = []
|
| 165 |
-
|
| 166 |
-
for f in files[:MAX_BATCH]:
|
| 167 |
-
path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
| 168 |
-
try:
|
| 169 |
-
# Run predict; returns a Results object list
|
| 170 |
-
results = ymodel.predict(source=path, conf=conf, iou=iou, imgsz=640, verbose=False)
|
| 171 |
-
except Exception as e:
|
| 172 |
-
print(f"Detection failed for {path}:", e)
|
| 173 |
-
continue
|
| 174 |
-
|
| 175 |
-
# results is list-like; take first
|
| 176 |
-
res = results[0]
|
| 177 |
-
|
| 178 |
-
# Prepare annotation image using res.plot() so boxes+confidences are drawn
|
| 179 |
-
ann_path = None
|
| 180 |
-
try:
|
| 181 |
-
ann_img = res.plot() # returns numpy array with annotations
|
| 182 |
-
from PIL import Image as PILImage
|
| 183 |
-
ann_pil = PILImage.fromarray(ann_img)
|
| 184 |
-
out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 185 |
-
os.makedirs(out_dir, exist_ok=True)
|
| 186 |
-
ann_filename = os.path.splitext(os.path.basename(path))[0] + "_annotated.jpg"
|
| 187 |
-
ann_path = os.path.join(out_dir, ann_filename)
|
| 188 |
-
ann_pil.save(ann_path)
|
| 189 |
-
except Exception:
|
| 190 |
-
# Fallback to ultralytics save if plot() isn't available
|
| 191 |
-
try:
|
| 192 |
-
out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 193 |
-
res.save(save_dir=out_dir)
|
| 194 |
-
saved_files = res.files if hasattr(res, 'files') else []
|
| 195 |
-
ann_path = saved_files[0] if saved_files else None
|
| 196 |
-
except Exception:
|
| 197 |
-
ann_path = None
|
| 198 |
-
|
| 199 |
-
# Build table rows from detections
|
| 200 |
-
boxes = res.boxes if hasattr(res, 'boxes') else None
|
| 201 |
-
if boxes is None or len(boxes) == 0:
|
| 202 |
-
table_rows.append([os.path.basename(path), 0, "", "", ""])
|
| 203 |
-
if ann_path and os.path.exists(ann_path):
|
| 204 |
-
gallery.append((Image.open(ann_path).convert('RGB'), f"{os.path.basename(path)}\nNo detections"))
|
| 205 |
-
else:
|
| 206 |
-
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\nNo detections"))
|
| 207 |
-
continue
|
| 208 |
-
|
| 209 |
-
det_labels = []
|
| 210 |
-
det_scores = []
|
| 211 |
-
det_boxes = []
|
| 212 |
-
for box in boxes:
|
| 213 |
-
# box.cls, box.conf, box.xyxy
|
| 214 |
-
cls = int(box.cls.cpu().item()) if hasattr(box, 'cls') else None
|
| 215 |
-
# use .item() to extract scalar and avoid numpy deprecation warnings
|
| 216 |
-
if hasattr(box, 'conf'):
|
| 217 |
-
try:
|
| 218 |
-
confscore = float(box.conf.cpu().item())
|
| 219 |
-
except Exception:
|
| 220 |
-
try:
|
| 221 |
-
confscore = float(box.conf.item())
|
| 222 |
-
except Exception:
|
| 223 |
-
confscore = None
|
| 224 |
-
else:
|
| 225 |
-
confscore = None
|
| 226 |
-
|
| 227 |
-
# extract xyxy coords; box.xyxy may be shape (1,4) -> nested list after .tolist()
|
| 228 |
-
coords = []
|
| 229 |
-
if hasattr(box, 'xyxy'):
|
| 230 |
-
try:
|
| 231 |
-
arr = box.xyxy.cpu().numpy()
|
| 232 |
-
# handle nested shape (1,4) or (4,)
|
| 233 |
-
if getattr(arr, 'ndim', None) == 2 and arr.shape[0] == 1:
|
| 234 |
-
coords = arr[0].tolist()
|
| 235 |
-
elif getattr(arr, 'ndim', None) == 1:
|
| 236 |
-
coords = arr.tolist()
|
| 237 |
-
else:
|
| 238 |
-
coords = arr.reshape(-1).tolist()
|
| 239 |
-
except Exception:
|
| 240 |
-
# fallback: try to call tolist()
|
| 241 |
-
try:
|
| 242 |
-
coords = box.xyxy.tolist()
|
| 243 |
-
except Exception:
|
| 244 |
-
coords = []
|
| 245 |
-
|
| 246 |
-
# append detection info
|
| 247 |
-
det_labels.append(ymodel.names.get(cls, str(cls)) if cls is not None else "")
|
| 248 |
-
det_scores.append(round(confscore, 4) if confscore is not None else "")
|
| 249 |
-
# round and store coords
|
| 250 |
-
try:
|
| 251 |
-
det_boxes.append([round(float(x), 2) for x in coords])
|
| 252 |
-
except Exception:
|
| 253 |
-
# fallback: store raw repr
|
| 254 |
-
det_boxes.append([str(coords)])
|
| 255 |
-
|
| 256 |
-
# create readable label:confidence pairs
|
| 257 |
-
label_conf_pairs = [f"{l}:{s}" for l, s in zip(det_labels, det_scores)]
|
| 258 |
-
boxes_repr = ["[" + ", ".join(map(str, b)) + "]" for b in det_boxes]
|
| 259 |
-
table_rows.append([
|
| 260 |
-
os.path.basename(path),
|
| 261 |
-
len(det_labels),
|
| 262 |
-
", ".join(label_conf_pairs),
|
| 263 |
-
", ".join(boxes_repr),
|
| 264 |
-
"; ".join([str(b) for b in det_boxes])
|
| 265 |
-
])
|
| 266 |
-
|
| 267 |
-
# Use annotated image if exists
|
| 268 |
-
if ann_path and os.path.exists(ann_path):
|
| 269 |
-
try:
|
| 270 |
-
gallery.append((Image.open(ann_path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 271 |
-
except Exception:
|
| 272 |
-
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 273 |
-
else:
|
| 274 |
-
gallery.append((Image.open(path).convert('RGB'), f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 275 |
-
|
| 276 |
-
# write CSV
|
| 277 |
-
csv_path = None
|
| 278 |
-
try:
|
| 279 |
-
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", prefix="yolo_preds_", dir=BASE_DIR, mode="w", newline='', encoding='utf-8')
|
| 280 |
-
writer = csv.writer(tmp)
|
| 281 |
-
writer.writerow(["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"])
|
| 282 |
-
for r in table_rows:
|
| 283 |
-
writer.writerow(r)
|
| 284 |
-
tmp.flush()
|
| 285 |
-
tmp.close()
|
| 286 |
-
csv_path = tmp.name
|
| 287 |
-
except Exception as e:
|
| 288 |
-
print("Failed to write CSV:", e)
|
| 289 |
csv_path = None
|
| 290 |
|
| 291 |
return gallery, table_rows, csv_path
|
|
@@ -295,7 +340,7 @@ single = gr.Interface(
|
|
| 295 |
fn=classify_image,
|
| 296 |
inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 297 |
outputs=gr.Label(num_top_classes=len(ID2LABEL), label="Species Classification"),
|
| 298 |
-
title="π BenthicAI
|
| 299 |
description="Classify one image into one of 7 benthic species."
|
| 300 |
)
|
| 301 |
|
|
@@ -308,32 +353,14 @@ batch = gr.Interface(
|
|
| 308 |
headers=["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"],
|
| 309 |
label="Predictions Table",
|
| 310 |
wrap=True
|
| 311 |
-
)
|
| 312 |
-
|
| 313 |
],
|
| 314 |
-
title="π BenthicAI
|
| 315 |
-
description="Upload multiple images (max 10).
|
| 316 |
)
|
| 317 |
|
| 318 |
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
|
| 319 |
-
print(YOLO==None, flush=True)
|
| 320 |
-
# Add Object Detection tab if ultralytics available
|
| 321 |
-
if YOLO is not None:
|
| 322 |
-
detection_iface = gr.Interface(
|
| 323 |
-
fn=detect_objects_batch,
|
| 324 |
-
inputs=[gr.Files(label="Upload images for detection (max 10)"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="conf threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, label="IOU threshold")],
|
| 325 |
-
outputs=[
|
| 326 |
-
gr.Gallery(label="Detections (annotated)", height=500, rows=3),
|
| 327 |
-
gr.Dataframe(headers=["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"], label="Detection Table"),
|
| 328 |
-
gr.File(label="Download CSV")
|
| 329 |
-
],
|
| 330 |
-
title="π BenthicAI - Object Detection",
|
| 331 |
-
description="Run YOLO object detection on multiple images. Requires 'yolo11_best.pt' in project root."
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
# extend tabs
|
| 335 |
-
demo = gr.TabbedInterface([single, batch, detection_iface], ["Single", "Batch", "Detection"])
|
| 336 |
|
| 337 |
if __name__ == "__main__":
|
| 338 |
-
demo.launch(server_name="0.0.0.0", server_port=7860
|
| 339 |
-
|
|
|
|
| 1 |
+
# # app.py β Object Detection only (multi-image YOLO, up to 10)
|
| 2 |
+
# import os
|
| 3 |
+
# import csv
|
| 4 |
+
# import tempfile
|
| 5 |
+
# from pathlib import Path
|
| 6 |
+
# from typing import List, Tuple
|
| 7 |
+
|
| 8 |
+
# import gradio as gr
|
| 9 |
+
# from PIL import Image
|
| 10 |
+
|
| 11 |
+
# # Try import ultralytics (ensure it's in requirements.txt)
|
| 12 |
+
# try:
|
| 13 |
+
# from ultralytics import YOLO
|
| 14 |
+
# except Exception:
|
| 15 |
+
# YOLO = None
|
| 16 |
+
|
| 17 |
+
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
+
# MAX_BATCH = 10
|
| 19 |
+
|
| 20 |
+
# # Option A: local file baked into Space (easiest if allowed)
|
| 21 |
+
# YOLO_WEIGHTS = os.path.join(BASE_DIR, "yolo11_best.pt")
|
| 22 |
+
|
| 23 |
+
# # Option B (optional): pull from a private HF model repo using a Space secret
|
| 24 |
+
# # Set these env vars in your Space if you want auto-download:
|
| 25 |
+
# # HF_TOKEN=<read token> YOLO_REPO_ID="yourname/yolo-detector"
|
| 26 |
+
# HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 27 |
+
# YOLO_REPO_ID = os.environ.get("YOLO_REPO_ID")
|
| 28 |
+
|
| 29 |
+
# def _download_from_hub_if_needed() -> str | None:
|
| 30 |
+
# """If YOLO_REPO_ID is set, download weights with huggingface_hub; else return None."""
|
| 31 |
+
# if not YOLO_REPO_ID:
|
| 32 |
+
# return None
|
| 33 |
+
# try:
|
| 34 |
+
# from huggingface_hub import snapshot_download
|
| 35 |
+
# local_dir = snapshot_download(
|
| 36 |
+
# repo_id=YOLO_REPO_ID, repo_type="model", token=HF_TOKEN
|
| 37 |
+
# )
|
| 38 |
+
# # try common filenames
|
| 39 |
+
# for name in ("yolo11_best.pt", "best.pt", "yolo.pt", "weights.pt"):
|
| 40 |
+
# cand = Path(local_dir) / name
|
| 41 |
+
# if cand.exists():
|
| 42 |
+
# return str(cand)
|
| 43 |
+
# except Exception as e:
|
| 44 |
+
# print("[YOLO] Hub download failed:", e)
|
| 45 |
+
# return None
|
| 46 |
+
|
| 47 |
+
# _yolo_model = None
|
| 48 |
+
# def _load_yolo():
|
| 49 |
+
# """Load YOLO weights either from local file or HF Hub."""
|
| 50 |
+
# global _yolo_model
|
| 51 |
+
# if _yolo_model is not None:
|
| 52 |
+
# return _yolo_model
|
| 53 |
+
# if YOLO is None:
|
| 54 |
+
# raise RuntimeError("ultralytics package not installed. Add 'ultralytics' to requirements.txt")
|
| 55 |
+
|
| 56 |
+
# model_path = None
|
| 57 |
+
# if os.path.exists(YOLO_WEIGHTS):
|
| 58 |
+
# model_path = YOLO_WEIGHTS
|
| 59 |
+
# else:
|
| 60 |
+
# hub_path = _download_from_hub_if_needed()
|
| 61 |
+
# if hub_path:
|
| 62 |
+
# model_path = hub_path
|
| 63 |
+
|
| 64 |
+
# if not model_path:
|
| 65 |
+
# raise FileNotFoundError(
|
| 66 |
+
# "YOLO weights not found. Either include 'yolo11_best.pt' in the repo root, "
|
| 67 |
+
# "or set YOLO_REPO_ID (+ HF_TOKEN if private) to pull from the Hub."
|
| 68 |
+
# )
|
| 69 |
+
|
| 70 |
+
# _yolo_model = YOLO(model_path)
|
| 71 |
+
# return _yolo_model
|
| 72 |
+
|
| 73 |
+
# def detect_objects_batch(files, conf=0.25, iou=0.25):
|
| 74 |
+
# """
|
| 75 |
+
# Run YOLO detection on multiple images (up to 10).
|
| 76 |
+
# Returns: gallery of annotated images, rows table, csv filepath
|
| 77 |
+
# """
|
| 78 |
+
# if YOLO is None:
|
| 79 |
+
# return [], [], None
|
| 80 |
+
# if not files:
|
| 81 |
+
# return [], [], None
|
| 82 |
+
|
| 83 |
+
# try:
|
| 84 |
+
# ymodel = _load_yolo()
|
| 85 |
+
# except Exception as e:
|
| 86 |
+
# print("YOLO load error:", e)
|
| 87 |
+
# return [], [], None
|
| 88 |
+
|
| 89 |
+
# gallery, table_rows = [], []
|
| 90 |
+
|
| 91 |
+
# for f in files[:MAX_BATCH]:
|
| 92 |
+
# path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
| 93 |
+
# try:
|
| 94 |
+
# results = ymodel.predict(source=path, conf=conf, iou=iou, imgsz=640, verbose=False)
|
| 95 |
+
# except Exception as e:
|
| 96 |
+
# print(f"Detection failed for {path}:", e)
|
| 97 |
+
# continue
|
| 98 |
+
# res = results[0]
|
| 99 |
+
|
| 100 |
+
# # annotated image
|
| 101 |
+
# ann_path = None
|
| 102 |
+
# try:
|
| 103 |
+
# ann_img = res.plot()
|
| 104 |
+
# ann_pil = Image.fromarray(ann_img)
|
| 105 |
+
# out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 106 |
+
# os.makedirs(out_dir, exist_ok=True)
|
| 107 |
+
# ann_filename = Path(path).stem + "_annotated.jpg"
|
| 108 |
+
# ann_path = os.path.join(out_dir, ann_filename)
|
| 109 |
+
# ann_pil.save(ann_path)
|
| 110 |
+
# except Exception:
|
| 111 |
+
# try:
|
| 112 |
+
# out_dir = tempfile.mkdtemp(prefix="yolo_out_", dir=BASE_DIR)
|
| 113 |
+
# res.save(save_dir=out_dir)
|
| 114 |
+
# saved_files = getattr(res, "files", [])
|
| 115 |
+
# ann_path = saved_files[0] if saved_files else None
|
| 116 |
+
# except Exception:
|
| 117 |
+
# ann_path = None
|
| 118 |
+
|
| 119 |
+
# # extract detections
|
| 120 |
+
# boxes = getattr(res, "boxes", None)
|
| 121 |
+
# if boxes is None or len(boxes) == 0:
|
| 122 |
+
# table_rows.append([os.path.basename(path), 0, "", "", ""])
|
| 123 |
+
# img_for_gallery = Image.open(ann_path).convert("RGB") if ann_path and os.path.exists(ann_path) \
|
| 124 |
+
# else Image.open(path).convert("RGB")
|
| 125 |
+
# gallery.append((img_for_gallery, f"{os.path.basename(path)}\nNo detections"))
|
| 126 |
+
# continue
|
| 127 |
+
|
| 128 |
+
# det_labels, det_scores, det_boxes = [], [], []
|
| 129 |
+
# for box in boxes:
|
| 130 |
+
# cls = int(box.cls.cpu().item()) if hasattr(box, "cls") else None
|
| 131 |
+
# # conf
|
| 132 |
+
# try:
|
| 133 |
+
# confscore = float(box.conf.cpu().item()) if hasattr(box, "conf") else None
|
| 134 |
+
# except Exception:
|
| 135 |
+
# try:
|
| 136 |
+
# confscore = float(box.conf.item())
|
| 137 |
+
# except Exception:
|
| 138 |
+
# confscore = None
|
| 139 |
+
# # xyxy
|
| 140 |
+
# coords = []
|
| 141 |
+
# if hasattr(box, "xyxy"):
|
| 142 |
+
# try:
|
| 143 |
+
# arr = box.xyxy.cpu().numpy()
|
| 144 |
+
# if getattr(arr, "ndim", None) == 2 and arr.shape[0] == 1:
|
| 145 |
+
# coords = arr[0].tolist()
|
| 146 |
+
# elif getattr(arr, "ndim", None) == 1:
|
| 147 |
+
# coords = arr.tolist()
|
| 148 |
+
# else:
|
| 149 |
+
# coords = arr.reshape(-1).tolist()
|
| 150 |
+
# except Exception:
|
| 151 |
+
# try:
|
| 152 |
+
# coords = box.xyxy.tolist()
|
| 153 |
+
# except Exception:
|
| 154 |
+
# coords = []
|
| 155 |
+
|
| 156 |
+
# det_labels.append(ymodel.names.get(cls, str(cls)) if cls is not None else "")
|
| 157 |
+
# det_scores.append(round(confscore, 4) if confscore is not None else "")
|
| 158 |
+
# try:
|
| 159 |
+
# det_boxes.append([round(float(x), 2) for x in coords])
|
| 160 |
+
# except Exception:
|
| 161 |
+
# det_boxes.append([str(coords)])
|
| 162 |
+
|
| 163 |
+
# label_conf_pairs = [f"{l}:{s}" for l, s in zip(det_labels, det_scores)]
|
| 164 |
+
# boxes_repr = ["[" + ", ".join(map(str, b)) + "]" for b in det_boxes]
|
| 165 |
+
# table_rows.append([
|
| 166 |
+
# os.path.basename(path),
|
| 167 |
+
# len(det_labels),
|
| 168 |
+
# ", ".join(label_conf_pairs),
|
| 169 |
+
# ", ".join(boxes_repr),
|
| 170 |
+
# "; ".join([str(b) for b in det_boxes]),
|
| 171 |
+
# ])
|
| 172 |
+
|
| 173 |
+
# img_for_gallery = Image.open(ann_path).convert("RGB") if ann_path and os.path.exists(ann_path) \
|
| 174 |
+
# else Image.open(path).convert("RGB")
|
| 175 |
+
# gallery.append((img_for_gallery, f"{os.path.basename(path)}\n{len(det_labels)} detections"))
|
| 176 |
+
|
| 177 |
+
# # write CSV
|
| 178 |
+
# csv_path = None
|
| 179 |
+
# try:
|
| 180 |
+
# tmp = tempfile.NamedTemporaryFile(
|
| 181 |
+
# delete=False, suffix=".csv", prefix="yolo_preds_", dir=BASE_DIR,
|
| 182 |
+
# mode="w", newline='', encoding='utf-8'
|
| 183 |
+
# )
|
| 184 |
+
# writer = csv.writer(tmp)
|
| 185 |
+
# writer.writerow(["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"])
|
| 186 |
+
# for r in table_rows:
|
| 187 |
+
# writer.writerow(r)
|
| 188 |
+
# tmp.flush(); tmp.close()
|
| 189 |
+
# csv_path = tmp.name
|
| 190 |
+
# except Exception as e:
|
| 191 |
+
# print("Failed to write CSV:", e)
|
| 192 |
+
# csv_path = None
|
| 193 |
+
|
| 194 |
+
# return gallery, table_rows, csv_path
|
| 195 |
+
|
| 196 |
+
# # ---------- UI ----------
|
| 197 |
+
# if YOLO is None:
|
| 198 |
+
# demo = gr.Interface(
|
| 199 |
+
# fn=lambda *a, **k: ("Ultralytics not installed; add 'ultralytics' to requirements.txt",),
|
| 200 |
+
# inputs=[],
|
| 201 |
+
# outputs="text",
|
| 202 |
+
# title="π BenthicAI β Object Detection",
|
| 203 |
+
# description="Ultralytics is not installed."
|
| 204 |
+
# )
|
| 205 |
+
# else:
|
| 206 |
+
# demo = gr.Interface(
|
| 207 |
+
# fn=detect_objects_batch,
|
| 208 |
+
# inputs=[
|
| 209 |
+
# gr.Files(label="Upload images (max 10)"),
|
| 210 |
+
# gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.01, label="Conf threshold"),
|
| 211 |
+
# gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.01, label="IoU threshold"),
|
| 212 |
+
# ],
|
| 213 |
+
# outputs=[
|
| 214 |
+
# gr.Gallery(label="Detections (annotated)", height=500, rows=3),
|
| 215 |
+
# gr.Dataframe(headers=["filename", "num_detections", "labels_with_conf", "boxes", "raw_boxes"],
|
| 216 |
+
# label="Detection Table"),
|
| 217 |
+
# gr.File(label="Download CSV"),
|
| 218 |
+
# ],
|
| 219 |
+
# title="π BenthicAI β Object Detection",
|
| 220 |
+
# description=(
|
| 221 |
+
# "Run YOLO object detection on multiple images. "
|
| 222 |
+
# "Place 'yolo11_best.pt' in the repo root, OR set YOLO_REPO_ID (+ HF_TOKEN if private) "
|
| 223 |
+
# "to fetch from the Hub."
|
| 224 |
+
# ),
|
| 225 |
+
# )
|
| 226 |
+
|
| 227 |
+
# if __name__ == "__main__":
|
| 228 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 229 |
+
# app.py β Image Classification only (single + batch up to 10)
|
| 230 |
+
import os
|
| 231 |
+
import csv
|
| 232 |
+
import tempfile
|
| 233 |
+
from pathlib import Path
|
| 234 |
+
from typing import List, Tuple
|
| 235 |
+
|
| 236 |
import gradio as gr
|
| 237 |
import torch
|
| 238 |
import torch.nn.functional as F
|
| 239 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 240 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 243 |
+
MODEL_ID = "dshi01/convnext-tiny-224-7clss" # your HF model repo id
|
| 244 |
+
PROCESSOR_ID = "facebook/convnext-tiny-224" # feature extractor
|
| 245 |
|
| 246 |
+
print(f"[IC] Loading model: {MODEL_ID}")
|
| 247 |
+
processor = AutoImageProcessor.from_pretrained(PROCESSOR_ID)
|
| 248 |
model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
|
| 249 |
model.eval()
|
| 250 |
|
| 251 |
+
# Build id2label list (stable order)
|
| 252 |
ID2LABEL = [
|
| 253 |
model.config.id2label.get(str(i), model.config.id2label.get(i, f"Label_{i}"))
|
| 254 |
for i in range(model.config.num_labels)
|
| 255 |
]
|
| 256 |
+
|
| 257 |
def classify_image(image):
|
| 258 |
+
"""Single-image classification."""
|
| 259 |
if not isinstance(image, Image.Image):
|
| 260 |
image = Image.fromarray(image).convert("RGB")
|
| 261 |
|
|
|
|
| 266 |
|
| 267 |
return {ID2LABEL[i]: float(p) for i, p in enumerate(probs)}
|
| 268 |
|
|
|
|
| 269 |
MAX_BATCH = 10
|
| 270 |
|
| 271 |
def classify_images_batch(files):
|
| 272 |
"""
|
| 273 |
+
Batch classification (up to 10).
|
| 274 |
+
Returns: gallery [(img, caption)], table rows, CSV filepath
|
|
|
|
|
|
|
| 275 |
"""
|
| 276 |
if not files:
|
| 277 |
return [], [], None
|
| 278 |
|
|
|
|
| 279 |
files = files[:MAX_BATCH]
|
| 280 |
|
| 281 |
+
# Load PILs
|
| 282 |
pil_images, names = [], []
|
| 283 |
for f in files:
|
| 284 |
path = getattr(f, "name", None) or getattr(f, "path", None) or f
|
|
|
|
| 287 |
pil_images.append(img)
|
| 288 |
names.append(os.path.basename(path))
|
| 289 |
except Exception:
|
|
|
|
| 290 |
continue
|
| 291 |
|
| 292 |
if not pil_images:
|
| 293 |
return [], [], None
|
| 294 |
|
|
|
|
| 295 |
inputs = processor(images=pil_images, return_tensors="pt")
|
| 296 |
with torch.no_grad():
|
| 297 |
logits = model(**inputs).logits
|
| 298 |
probs = F.softmax(logits, dim=1)
|
| 299 |
|
|
|
|
| 300 |
gallery = []
|
| 301 |
table_rows = [] # [filename, top1_label, top1_conf, top3_labels, top3_confs]
|
| 302 |
|
|
|
|
| 305 |
top_idxs = sorted(range(len(p)), key=lambda i: p[i], reverse=True)[:3]
|
| 306 |
top1 = top_idxs[0]
|
| 307 |
caption = f"{ID2LABEL[top1]} ({p[top1]:.2%})"
|
|
|
|
| 308 |
gallery.append((img, f"{fname}\n{caption}"))
|
| 309 |
|
| 310 |
top3_labels = [ID2LABEL[i] for i in top_idxs]
|
|
|
|
| 320 |
# Create CSV for download
|
| 321 |
csv_path = None
|
| 322 |
try:
|
| 323 |
+
tmp = tempfile.NamedTemporaryFile(
|
| 324 |
+
delete=False, suffix=".csv", prefix="predictions_", dir=BASE_DIR,
|
| 325 |
+
mode="w", newline='', encoding='utf-8'
|
| 326 |
+
)
|
| 327 |
writer = csv.writer(tmp)
|
|
|
|
| 328 |
writer.writerow(["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"])
|
| 329 |
for row in table_rows:
|
| 330 |
writer.writerow(row)
|
| 331 |
+
tmp.flush(); tmp.close()
|
|
|
|
| 332 |
csv_path = tmp.name
|
| 333 |
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
csv_path = None
|
| 335 |
|
| 336 |
return gallery, table_rows, csv_path
|
|
|
|
| 340 |
fn=classify_image,
|
| 341 |
inputs=gr.Image(type="pil", label="Upload Underwater Image"),
|
| 342 |
outputs=gr.Label(num_top_classes=len(ID2LABEL), label="Species Classification"),
|
| 343 |
+
title="π BenthicAI β Single Image",
|
| 344 |
description="Classify one image into one of 7 benthic species."
|
| 345 |
)
|
| 346 |
|
|
|
|
| 353 |
headers=["filename", "top1_label", "top1_conf", "top3_labels", "top3_confs"],
|
| 354 |
label="Predictions Table",
|
| 355 |
wrap=True
|
| 356 |
+
),
|
| 357 |
+
gr.File(label="Download CSV")
|
| 358 |
],
|
| 359 |
+
title="π BenthicAI β Batch (up to 10)",
|
| 360 |
+
description="Upload multiple images (max 10)."
|
| 361 |
)
|
| 362 |
|
| 363 |
demo = gr.TabbedInterface([single, batch], ["Single", "Batch"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
if __name__ == "__main__":
|
| 366 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|