Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import pandas
|
| 4 |
+
import gradio
|
| 5 |
+
import PIL
|
| 6 |
+
import huggingface_hub
|
| 7 |
+
import huggingface_hub.hf_api
|
| 8 |
+
import json
|
| 9 |
+
import requests
|
| 10 |
+
# import openai
|
| 11 |
+
# openai.api_key = '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'
|
| 12 |
+
class HFace_Pluto(object):
|
| 13 |
+
#
|
| 14 |
+
# initialize the object
|
| 15 |
+
def __init__(self, name="Pluto",*args, **kwargs):
|
| 16 |
+
super(HFace_Pluto, self).__init__(*args, **kwargs)
|
| 17 |
+
self.author = "Duc Haba"
|
| 18 |
+
self.name = name
|
| 19 |
+
self._ph()
|
| 20 |
+
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
|
| 21 |
+
self._pp("Code name", self.name)
|
| 22 |
+
self._pp("Author is", self.author)
|
| 23 |
+
self._ph()
|
| 24 |
+
#
|
| 25 |
+
# define class var for stable division
|
| 26 |
+
self._device = 'cuda'
|
| 27 |
+
self._steps = [3,8,21,55,89,144]
|
| 28 |
+
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
|
| 29 |
+
self._models = ['CompVis/stable-diffusion-v1-4', #default
|
| 30 |
+
'stabilityai/stable-diffusion-2-1', #1 latest as of feb. 28, 2023
|
| 31 |
+
'dreamlike-art/dreamlike-diffusion-1.0', #2 ilike
|
| 32 |
+
'prompthero/openjourney-v2', #3 ilike
|
| 33 |
+
'itecgo/sd-lexica_6k-model', #4
|
| 34 |
+
'nitrosocke/mo-di-diffusion',
|
| 35 |
+
'coreco/seek.art_MEGA',
|
| 36 |
+
'andite/anything-v4.0', #7 anime
|
| 37 |
+
'nitrosocke/Nitro-Diffusion',
|
| 38 |
+
'22h/vintedois-diffusion-v0-1', #9 ilike
|
| 39 |
+
'Lykon/DreamShaper', #10 ilike
|
| 40 |
+
'rrustom/stable-architecture-diffusers', # 11
|
| 41 |
+
'hakurei/waifu-diffusion', #anime style
|
| 42 |
+
'wavymulder/portraitplus', #13 ilike
|
| 43 |
+
'dreamlike-art/dreamlike-photoreal-2.0', #no check
|
| 44 |
+
'johnslegers/epic-diffusion', #15 ilike good example
|
| 45 |
+
'nitrosocke/Arcane-Diffusion' #16 ilike
|
| 46 |
+
]
|
| 47 |
+
self._seed = 667 # sum of walnut in ascii (or Angle 667)
|
| 48 |
+
self._width = 512
|
| 49 |
+
self._height = 512
|
| 50 |
+
self._step = 50
|
| 51 |
+
self._guidances = 7.5
|
| 52 |
+
#self._generator = torch.Generator(device='cuda')
|
| 53 |
+
self.pipes = []
|
| 54 |
+
self.prompts = []
|
| 55 |
+
self.images = []
|
| 56 |
+
self.seeds = []
|
| 57 |
+
self.fname_id = 0
|
| 58 |
+
self.dname_img = "img_colab/"
|
| 59 |
+
return
|
| 60 |
+
#
|
| 61 |
+
# pretty print output name-value line
|
| 62 |
+
def _pp(self, a, b):
|
| 63 |
+
print("%34s : %s" % (str(a), str(b)))
|
| 64 |
+
return
|
| 65 |
+
#
|
| 66 |
+
# pretty print the header or footer lines
|
| 67 |
+
def _ph(self):
|
| 68 |
+
print("-" * 34, ":", "-" * 34)
|
| 69 |
+
return
|
| 70 |
+
#
|
| 71 |
+
# fetch huggingface file
|
| 72 |
+
def fetch_hface_files(self,
|
| 73 |
+
hf_names,
|
| 74 |
+
hf_space="duchaba/skin_cancer_diagnose",
|
| 75 |
+
local_dir="/content/"):
|
| 76 |
+
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
|
| 77 |
+
try:
|
| 78 |
+
for f in hf_names:
|
| 79 |
+
lo = local_dir + f
|
| 80 |
+
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
|
| 81 |
+
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
|
| 82 |
+
force_filename=lo)
|
| 83 |
+
except:
|
| 84 |
+
self._pp("*Error", f)
|
| 85 |
+
return
|
| 86 |
+
#
|
| 87 |
+
#
|
| 88 |
+
def push_hface_files(self,
|
| 89 |
+
hf_names,
|
| 90 |
+
hf_space="duchaba/skin_cancer_diagnose",
|
| 91 |
+
local_dir="/content/"):
|
| 92 |
+
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
|
| 93 |
+
try:
|
| 94 |
+
for f in hf_names:
|
| 95 |
+
lo = local_dir + f
|
| 96 |
+
huggingface_hub.upload_file(
|
| 97 |
+
path_or_fileobj=lo,
|
| 98 |
+
path_in_repo=f,
|
| 99 |
+
repo_id=hf_space,
|
| 100 |
+
repo_type=huggingface_hub.REPO_TYPE_SPACE)
|
| 101 |
+
except:
|
| 102 |
+
self._pp("*Error", f)
|
| 103 |
+
return
|
| 104 |
+
#
|
| 105 |
+
def write_file(self,fname, txt):
|
| 106 |
+
f = open(fname, "w")
|
| 107 |
+
f.writelines("\n".join(txt))
|
| 108 |
+
f.close()
|
| 109 |
+
return
|
| 110 |
+
def draw_it(self,prompt):
|
| 111 |
+
url = 'lion.png'
|
| 112 |
+
img = PIL.Image.open(url)
|
| 113 |
+
return img
|
| 114 |
+
#
|
| 115 |
+
# add module/method
|
| 116 |
+
#
|
| 117 |
+
import functools
|
| 118 |
+
def add_method(cls):
|
| 119 |
+
def decorator(func):
|
| 120 |
+
@functools.wraps(func)
|
| 121 |
+
def wrapper(*args, **kwargs):
|
| 122 |
+
return func(*args, **kwargs)
|
| 123 |
+
setattr(cls, func.__name__, wrapper)
|
| 124 |
+
return func # returning func means func can still be used normally
|
| 125 |
+
return decorator
|
| 126 |
+
|
| 127 |
+
# instantiate the class
|
| 128 |
+
monty = HFace_Pluto('Monty')
|
| 129 |
+
|
| 130 |
+
# use magic prompt model
|
| 131 |
+
monty.gpt2_pipe = transformers.pipeline('text-generation',
|
| 132 |
+
model='Gustavosta/MagicPrompt-Stable-Diffusion',
|
| 133 |
+
tokenizer='gpt2')
|
| 134 |
+
|
| 135 |
+
# fetch prompt
|
| 136 |
+
@add_method(HFace_Pluto)
|
| 137 |
+
def _print_response(self, response):
|
| 138 |
+
for x in response:
|
| 139 |
+
print(x['generated_text'])
|
| 140 |
+
return
|
| 141 |
+
#
|
| 142 |
+
@add_method(HFace_Pluto)
|
| 143 |
+
def fetch_prompt(self, prompt, max_num=1, max_length=240, is_print=False):
|
| 144 |
+
response = self.gpt2_pipe(prompt,
|
| 145 |
+
max_length=max_length,
|
| 146 |
+
num_return_sequences=max_num)
|
| 147 |
+
#
|
| 148 |
+
if (is_print):
|
| 149 |
+
self._print_response(response)
|
| 150 |
+
return response
|
| 151 |
+
|
| 152 |
+
# use pluto _pp for interface testing
|
| 153 |
+
# iface = gradio.Interface(fn=pluto.draw_it, inputs="text", outputs="image",
|
| 154 |
+
# flagging_options=["Excellent", "Good", "Not Bad"])
|
| 155 |
+
iface = gradio.Interface(fn=monty.fetch_prompt, inputs="text", outputs="text",
|
| 156 |
+
flagging_options=[])
|
| 157 |
+
|
| 158 |
+
# Launch it
|
| 159 |
+
iface.launch()
|