Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import subprocess | |
| import spaces | |
| import torch | |
| import os | |
| import re | |
| import threading | |
| import queue | |
| import time | |
| zero = torch.Tensor([0]).cuda() | |
| print(zero.device) # <-- 'cpu' 🤔 | |
| def stream_output(process, q): | |
| for line in iter(process.stdout.readline, b''): | |
| q.put(line.decode('utf-8').strip()) | |
| process.stdout.close() | |
| def run_evaluation(model_name): | |
| print(zero.device) # <-- 'cuda:0' 🤗 | |
| results = [] | |
| manifest_logs = [] | |
| if "HF_TOKEN" not in os.environ: | |
| return "Error: HF_TOKEN not found in environment variables.", "Error: Cannot start manifest server without HF_TOKEN." | |
| manifest_process = None | |
| log_queue = queue.Queue() | |
| try: | |
| manifest_cmd = f""" | |
| cd duckdb-nsql/ && | |
| CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \ | |
| --model_type huggingface \ | |
| --model_generation_type text-generation \ | |
| --model_name_or_path {model_name} \ | |
| --fp16 \ | |
| --device 0 | |
| """ | |
| manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True) | |
| threading.Thread(target=stream_output, args=(manifest_process, log_queue), daemon=True).start() | |
| results.append("Started manifest server in background.") | |
| # Wait for the server to initialize (adjust time as needed) | |
| server_ready = False | |
| for _ in range(60): # Increased timeout to 60 seconds | |
| try: | |
| line = log_queue.get(timeout=1) | |
| manifest_logs.append(line) | |
| if "Running on" in line: # Server is ready | |
| server_ready = True | |
| break | |
| except queue.Empty: | |
| pass | |
| if not server_ready: | |
| raise Exception("Manifest server failed to start within the expected time.") | |
| # Run inference | |
| inference_cmd = f""" | |
| cd duckdb-nsql/ && | |
| python eval/predict.py \ | |
| predict \ | |
| eval/data/dev.json \ | |
| eval/data/tables.json \ | |
| --output-dir output/ \ | |
| --stop-tokens ';' \ | |
| --overwrite-manifest \ | |
| --manifest-client huggingface \ | |
| --manifest-connection http://localhost:5000 \ | |
| --prompt-format duckdbinstgraniteshort | |
| """ | |
| inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True) | |
| results.append("Inference completed.") | |
| # Extract JSON file path from inference output | |
| json_path_match = re.search(r'(.*\.json)', inference_result.stdout) | |
| if not json_path_match: | |
| raise ValueError("Could not find JSON file path in inference output") | |
| json_file = os.path.basename(json_path_match.group(1)) | |
| results.append(f"Generated JSON file: {json_file}") | |
| # Run evaluation | |
| eval_cmd = f""" | |
| cd duckdb-nsql/ && | |
| python eval/evaluate.py evaluate \ | |
| --gold eval/data/dev.json \ | |
| --db eval/data/databases/ \ | |
| --tables eval/data/tables.json \ | |
| --output-dir output/ \ | |
| --pred output/{json_file} | |
| """ | |
| eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True) | |
| # Extract and format metrics from eval output | |
| metrics = eval_result.stdout | |
| if metrics: | |
| results.append(f"Evaluation completed:\n{metrics}") | |
| else: | |
| results.append("Evaluation completed, but couldn't get metrics.") | |
| except subprocess.CalledProcessError as e: | |
| results.append(f"Error occurred: {str(e)}") | |
| results.append(f"Command output: {e.output}") | |
| except Exception as e: | |
| results.append(f"An unexpected error occurred: {str(e)}") | |
| finally: | |
| # Terminate the background manifest server | |
| if manifest_process: | |
| manifest_process.terminate() | |
| results.append("Terminated manifest server.") | |
| # Collect any remaining logs | |
| while True: | |
| try: | |
| line = log_queue.get_nowait() | |
| manifest_logs.append(line) | |
| except queue.Empty: | |
| break | |
| return "\n\n".join(results), "\n".join(manifest_logs) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# DuckDB SQL Evaluation App") | |
| model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)") | |
| start_btn = gr.Button("Start Evaluation") | |
| output = gr.Textbox(label="Evaluation Output", lines=20) | |
| manifest_output = gr.Textbox(label="Manifest Server Logs", lines=20) | |
| start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=[output, manifest_output]) | |
| demo.launch() |