Spaces:
Sleeping
Sleeping
show manifest output
Browse files
app.py
CHANGED
|
@@ -4,38 +4,60 @@ import spaces
|
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import re
|
|
|
|
|
|
|
| 7 |
|
| 8 |
zero = torch.Tensor([0]).cuda()
|
| 9 |
print(zero.device) # <-- 'cpu' 🤔
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
@spaces.GPU
|
| 12 |
def run_evaluation(model_name):
|
| 13 |
print(zero.device) # <-- 'cuda:0' 🤗
|
| 14 |
|
| 15 |
results = []
|
|
|
|
| 16 |
|
| 17 |
# Use the secret HF token from the Hugging Face space
|
| 18 |
if "HF_TOKEN" not in os.environ:
|
| 19 |
-
return "Error: HF_TOKEN not found in environment variables."
|
| 20 |
|
| 21 |
manifest_process = None
|
|
|
|
| 22 |
try:
|
| 23 |
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
|
| 24 |
manifest_cmd = f"""
|
| 25 |
-
|
| 26 |
-
python -m manifest.api.app \
|
| 27 |
--model_type huggingface \
|
| 28 |
--model_generation_type text-generation \
|
| 29 |
--model_name_or_path {model_name} \
|
| 30 |
--fp16 \
|
| 31 |
--device 0
|
| 32 |
"""
|
| 33 |
-
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.
|
|
|
|
|
|
|
|
|
|
| 34 |
results.append("Started manifest server in background.")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# Run inference
|
| 37 |
inference_cmd = f"""
|
| 38 |
-
cd duckdb-nsql/ &&
|
| 39 |
python eval/predict.py \
|
| 40 |
predict \
|
| 41 |
eval/data/dev.json \
|
|
@@ -59,7 +81,7 @@ def run_evaluation(model_name):
|
|
| 59 |
|
| 60 |
# Run evaluation
|
| 61 |
eval_cmd = f"""
|
| 62 |
-
cd duckdb-nsql/ &&
|
| 63 |
python eval/evaluate.py evaluate \
|
| 64 |
--gold eval/data/dev.json \
|
| 65 |
--db eval/data/databases/ \
|
|
@@ -74,7 +96,7 @@ def run_evaluation(model_name):
|
|
| 74 |
if metrics:
|
| 75 |
results.append(f"Evaluation completed:\n{metrics}")
|
| 76 |
else:
|
| 77 |
-
results.append("Evaluation completed, but get metrics.")
|
| 78 |
|
| 79 |
except subprocess.CalledProcessError as e:
|
| 80 |
results.append(f"Error occurred: {str(e)}")
|
|
@@ -87,15 +109,24 @@ def run_evaluation(model_name):
|
|
| 87 |
manifest_process.terminate()
|
| 88 |
results.append("Terminated manifest server.")
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
with gr.Blocks() as demo:
|
| 93 |
-
gr.Markdown("# DuckDB
|
| 94 |
|
| 95 |
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
|
| 96 |
start_btn = gr.Button("Start Evaluation")
|
| 97 |
-
output = gr.Textbox(label="Output", lines=20)
|
|
|
|
| 98 |
|
| 99 |
-
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output)
|
| 100 |
|
| 101 |
demo.launch()
|
|
|
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
import re
|
| 7 |
+
import threading
|
| 8 |
+
import queue
|
| 9 |
|
| 10 |
zero = torch.Tensor([0]).cuda()
|
| 11 |
print(zero.device) # <-- 'cpu' 🤔
|
| 12 |
|
| 13 |
+
def stream_output(process, q):
|
| 14 |
+
for line in iter(process.stdout.readline, b''):
|
| 15 |
+
q.put(line.decode('utf-8').strip())
|
| 16 |
+
process.stdout.close()
|
| 17 |
+
|
| 18 |
@spaces.GPU
|
| 19 |
def run_evaluation(model_name):
|
| 20 |
print(zero.device) # <-- 'cuda:0' 🤗
|
| 21 |
|
| 22 |
results = []
|
| 23 |
+
manifest_logs = []
|
| 24 |
|
| 25 |
# Use the secret HF token from the Hugging Face space
|
| 26 |
if "HF_TOKEN" not in os.environ:
|
| 27 |
+
return "Error: HF_TOKEN not found in environment variables.", "Error: Cannot start manifest server without HF_TOKEN."
|
| 28 |
|
| 29 |
manifest_process = None
|
| 30 |
+
log_queue = queue.Queue()
|
| 31 |
try:
|
| 32 |
# Start manifest server in background with explicit CUDA_VISIBLE_DEVICES
|
| 33 |
manifest_cmd = f"""
|
| 34 |
+
cd duckdb-nsql/ &&
|
| 35 |
+
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \
|
| 36 |
--model_type huggingface \
|
| 37 |
--model_generation_type text-generation \
|
| 38 |
--model_name_or_path {model_name} \
|
| 39 |
--fp16 \
|
| 40 |
--device 0
|
| 41 |
"""
|
| 42 |
+
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1, universal_newlines=True)
|
| 43 |
+
|
| 44 |
+
threading.Thread(target=stream_output, args=(manifest_process, log_queue), daemon=True).start()
|
| 45 |
+
|
| 46 |
results.append("Started manifest server in background.")
|
| 47 |
|
| 48 |
+
# Wait for the server to initialize (adjust time as needed)
|
| 49 |
+
for _ in range(30):
|
| 50 |
+
try:
|
| 51 |
+
line = log_queue.get(timeout=1)
|
| 52 |
+
manifest_logs.append(line)
|
| 53 |
+
if "Running on" in line: # Server is ready
|
| 54 |
+
break
|
| 55 |
+
except queue.Empty:
|
| 56 |
+
pass
|
| 57 |
+
|
| 58 |
# Run inference
|
| 59 |
inference_cmd = f"""
|
| 60 |
+
cd duckdb-nsql/ &&
|
| 61 |
python eval/predict.py \
|
| 62 |
predict \
|
| 63 |
eval/data/dev.json \
|
|
|
|
| 81 |
|
| 82 |
# Run evaluation
|
| 83 |
eval_cmd = f"""
|
| 84 |
+
cd duckdb-nsql/ &&
|
| 85 |
python eval/evaluate.py evaluate \
|
| 86 |
--gold eval/data/dev.json \
|
| 87 |
--db eval/data/databases/ \
|
|
|
|
| 96 |
if metrics:
|
| 97 |
results.append(f"Evaluation completed:\n{metrics}")
|
| 98 |
else:
|
| 99 |
+
results.append("Evaluation completed, but couldn't get metrics.")
|
| 100 |
|
| 101 |
except subprocess.CalledProcessError as e:
|
| 102 |
results.append(f"Error occurred: {str(e)}")
|
|
|
|
| 109 |
manifest_process.terminate()
|
| 110 |
results.append("Terminated manifest server.")
|
| 111 |
|
| 112 |
+
# Collect any remaining logs
|
| 113 |
+
while True:
|
| 114 |
+
try:
|
| 115 |
+
line = log_queue.get_nowait()
|
| 116 |
+
manifest_logs.append(line)
|
| 117 |
+
except queue.Empty:
|
| 118 |
+
break
|
| 119 |
+
|
| 120 |
+
return "\n\n".join(results), "\n".join(manifest_logs)
|
| 121 |
|
| 122 |
with gr.Blocks() as demo:
|
| 123 |
+
gr.Markdown("# DuckDB SQL Evaluation App")
|
| 124 |
|
| 125 |
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)")
|
| 126 |
start_btn = gr.Button("Start Evaluation")
|
| 127 |
+
output = gr.Textbox(label="Evaluation Output", lines=20)
|
| 128 |
+
manifest_output = gr.Textbox(label="Manifest Server Logs", lines=20)
|
| 129 |
|
| 130 |
+
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=[output, manifest_output])
|
| 131 |
|
| 132 |
demo.launch()
|