Spaces:
Runtime error
Runtime error
Stefan Dumitrescu
commited on
Commit
·
2f0ed55
1
Parent(s):
9506fdb
Update
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
|
| 4 |
st.set_page_config(
|
|
@@ -64,16 +65,24 @@ def setModel(model_checkpoint):
|
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 66 |
return model, tokenizer
|
|
|
|
|
|
|
| 67 |
#############################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
col1, _, col2 = st.columns([10, 1, 16])
|
| 70 |
|
| 71 |
with col1:
|
| 72 |
-
st.
|
| 73 |
|
| 74 |
model_checkpoint = st.selectbox("Select model", model_list)
|
| 75 |
|
| 76 |
-
st.
|
| 77 |
|
| 78 |
tab_greedy, tab_beamsearch, tab_sampling, tab_typical = st.tabs(["Greedy", "Beam-search", "Sampling", "Typical Sampling"])
|
| 79 |
|
|
@@ -92,20 +101,19 @@ with col1:
|
|
| 92 |
|
| 93 |
st.markdown("""---""")
|
| 94 |
|
| 95 |
-
st.
|
| 96 |
|
| 97 |
no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
|
| 98 |
temperature = st.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
| 99 |
-
max_length = st.slider("
|
| 100 |
|
|
|
|
| 101 |
|
| 102 |
-
with col2:
|
| 103 |
-
with st.container():
|
| 104 |
-
button_greedy = st.button("Greedy")
|
| 105 |
-
button_beam_search = st.button("Beam-search")
|
| 106 |
-
button_sampling = st.button("Sampling")
|
| 107 |
-
button_typical = st.button("Typical sampling")
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
@st.cache(allow_output_mutation=True)
|
| 111 |
def setModel(model_checkpoint):
|
|
@@ -114,19 +122,56 @@ def setModel(model_checkpoint):
|
|
| 114 |
return model, tokenizer
|
| 115 |
|
| 116 |
#####################################################
|
| 117 |
-
#
|
| 118 |
|
| 119 |
if 'text' not in st.session_state:
|
| 120 |
st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'
|
| 121 |
|
| 122 |
details = ""
|
|
|
|
| 123 |
|
| 124 |
-
if button_greedy:
|
| 125 |
model, tokenizer = setModel(model_checkpoint)
|
|
|
|
| 126 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 131 |
details = "Text generated using greedy decoding"
|
| 132 |
|
|
@@ -135,19 +180,27 @@ if button_sampling:
|
|
| 135 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 136 |
input_ids = tokenized_text.input_ids
|
| 137 |
attention_mask = tokenized_text.attention_mask
|
| 138 |
-
|
|
|
|
| 139 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 140 |
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
|
| 141 |
|
| 142 |
if button_typical:
|
| 143 |
model, tokenizer = setModel(model_checkpoint)
|
| 144 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 145 |
-
input_ids = tokenized_text.input_ids
|
| 146 |
-
|
| 147 |
-
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams,
|
| 148 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 149 |
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
|
|
|
|
| 150 |
|
| 151 |
text_element = col2.text_area('Text:', height=400, key="text")
|
|
|
|
|
|
|
| 152 |
if details != "":
|
| 153 |
-
col2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
st.set_page_config(
|
|
|
|
| 65 |
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
| 66 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 67 |
return model, tokenizer
|
| 68 |
+
|
| 69 |
+
|
| 70 |
#############################################
|
| 71 |
+
col_title, _, col_b1, col_b2, col_b3, _ = st.columns([18, 1, 8, 8, 8, 1])
|
| 72 |
+
col_title.markdown("**Playground for text generation with Romanian models**")
|
| 73 |
+
button_greedy = col_b1.button("Greedy generation")
|
| 74 |
+
button_sampling = col_b2.button("Sampling generation")
|
| 75 |
+
button_typical = col_b3.button("Typical sampling generation")
|
| 76 |
+
|
| 77 |
|
| 78 |
col1, _, col2 = st.columns([10, 1, 16])
|
| 79 |
|
| 80 |
with col1:
|
| 81 |
+
st.markdown("**Step 1: Select model**")
|
| 82 |
|
| 83 |
model_checkpoint = st.selectbox("Select model", model_list)
|
| 84 |
|
| 85 |
+
st.markdown("**Step 2: Adjust specific text generation parameters**")
|
| 86 |
|
| 87 |
tab_greedy, tab_beamsearch, tab_sampling, tab_typical = st.tabs(["Greedy", "Beam-search", "Sampling", "Typical Sampling"])
|
| 88 |
|
|
|
|
| 101 |
|
| 102 |
st.markdown("""---""")
|
| 103 |
|
| 104 |
+
st.markdown("**Step 3: Adjust common text generation parameters**")
|
| 105 |
|
| 106 |
no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
|
| 107 |
temperature = st.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
| 108 |
+
max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)
|
| 109 |
|
| 110 |
+
st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
def update_prompt():
|
| 114 |
+
st.session_state['text'] = prompt
|
| 115 |
+
|
| 116 |
+
prompt = st.selectbox("Select prompt", model_list, on_change=update_prompt)
|
| 117 |
|
| 118 |
@st.cache(allow_output_mutation=True)
|
| 119 |
def setModel(model_checkpoint):
|
|
|
|
| 122 |
return model, tokenizer
|
| 123 |
|
| 124 |
#####################################################
|
| 125 |
+
# show-time
|
| 126 |
|
| 127 |
if 'text' not in st.session_state:
|
| 128 |
st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'
|
| 129 |
|
| 130 |
details = ""
|
| 131 |
+
tokenized_text = None
|
| 132 |
|
| 133 |
+
if button_greedy or button_sampling or button_typical:
|
| 134 |
model, tokenizer = setModel(model_checkpoint)
|
| 135 |
+
|
| 136 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 137 |
+
|
| 138 |
+
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
|
| 139 |
+
keep_last = 512 - max_length
|
| 140 |
+
print(f"keep last: {keep_last}")
|
| 141 |
+
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
|
| 142 |
+
previous_ids = tokenized_text.input_ids[0][:keep_last]
|
| 143 |
+
st.warning(f"kept last {keep_last}")
|
| 144 |
+
else:
|
| 145 |
+
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
|
| 146 |
+
previous_ids = None
|
| 147 |
+
|
| 148 |
+
length = min(512, len(input_ids)+max_length)
|
| 149 |
+
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
| 150 |
+
|
| 151 |
+
if previous_ids is not None:
|
| 152 |
+
new_text = tokenizer.decode(torch.cat([previous_ids, output[0]], dim=1), skip_special_tokens=True)
|
| 153 |
+
else:
|
| 154 |
+
new_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 155 |
+
|
| 156 |
+
st.session_state['text'] = new_text
|
| 157 |
+
details = "Text generated using greedy decoding"
|
| 158 |
+
|
| 159 |
+
"""
|
| 160 |
+
if button_greedy:
|
| 161 |
+
|
| 162 |
+
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 163 |
+
print(f"len text: {len(tokenized_text.input_ids[0])}")
|
| 164 |
+
print(f"max_len : {max_length}")
|
| 165 |
+
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
|
| 166 |
+
keep_last = 512 - max_length
|
| 167 |
+
print(f"keep last: {keep_last}")
|
| 168 |
+
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
|
| 169 |
+
st.warning(f"kept last {keep_last}")
|
| 170 |
+
else:
|
| 171 |
+
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
|
| 172 |
+
|
| 173 |
+
length = min(512, len(input_ids)+max_length)
|
| 174 |
+
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
| 175 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 176 |
details = "Text generated using greedy decoding"
|
| 177 |
|
|
|
|
| 180 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 181 |
input_ids = tokenized_text.input_ids
|
| 182 |
attention_mask = tokenized_text.attention_mask
|
| 183 |
+
length = min(512, len(input_ids[0]) + max_length)
|
| 184 |
+
output = sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, top_k, top_p)
|
| 185 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 186 |
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
|
| 187 |
|
| 188 |
if button_typical:
|
| 189 |
model, tokenizer = setModel(model_checkpoint)
|
| 190 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 191 |
+
input_ids, attention_mask = tokenized_text.input_ids, tokenized_text.attention_mask
|
| 192 |
+
length = min(512, len(input_ids[0]) + max_length)
|
| 193 |
+
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, typical_p)
|
| 194 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 195 |
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
|
| 196 |
+
"""
|
| 197 |
|
| 198 |
text_element = col2.text_area('Text:', height=400, key="text")
|
| 199 |
+
col2.markdown("""---""")
|
| 200 |
+
col2.text("Statistics and details:")
|
| 201 |
if details != "":
|
| 202 |
+
col2.caption("\tGeneration details: " + details)
|
| 203 |
+
if tokenized_text is None:
|
| 204 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 205 |
+
tt = tokenizer(text_element, add_special_tokens=False, return_tensors="pt")
|
| 206 |
+
col2.caption(f"\tText length is {len(text_element)} characters, {len(tt.input_ids[0])} tokens.")
|