Spaces:
Runtime error
Runtime error
Stefan Dumitrescu
commited on
Commit
·
c90ce91
1
Parent(s):
19c9e19
Update
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
|
| 5 |
st.set_page_config(
|
|
@@ -104,7 +105,7 @@ with col1:
|
|
| 104 |
temperature = st.slider("Temperature", value=1.0, min_value=0.1, max_value=1.0, step=0.1)
|
| 105 |
max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)
|
| 106 |
|
| 107 |
-
st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")
|
| 108 |
|
| 109 |
|
| 110 |
|
|
@@ -129,6 +130,11 @@ details = ""
|
|
| 129 |
tokenized_text = None
|
| 130 |
|
| 131 |
if button_greedy or button_sampling or button_typical:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
model, tokenizer = setModel(model_checkpoint)
|
| 133 |
|
| 134 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
|
@@ -144,7 +150,16 @@ if button_greedy or button_sampling or button_typical:
|
|
| 144 |
previous_ids = None
|
| 145 |
|
| 146 |
length = min(512, len(input_ids)+max_length)
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
if previous_ids is not None:
|
| 150 |
print(f"\nConcat prev id: "+tokenizer.decode(previous_ids, skip_special_tokens=True))
|
|
@@ -154,46 +169,8 @@ if button_greedy or button_sampling or button_typical:
|
|
| 154 |
new_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 155 |
|
| 156 |
st.session_state['text'] = new_text
|
| 157 |
-
details = "Text generated using greedy decoding"
|
| 158 |
|
| 159 |
-
"""
|
| 160 |
-
if button_greedy:
|
| 161 |
|
| 162 |
-
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 163 |
-
print(f"len text: {len(tokenized_text.input_ids[0])}")
|
| 164 |
-
print(f"max_len : {max_length}")
|
| 165 |
-
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
|
| 166 |
-
keep_last = 512 - max_length
|
| 167 |
-
print(f"keep last: {keep_last}")
|
| 168 |
-
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
|
| 169 |
-
st.warning(f"kept last {keep_last}")
|
| 170 |
-
else:
|
| 171 |
-
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
|
| 172 |
-
|
| 173 |
-
length = min(512, len(input_ids)+max_length)
|
| 174 |
-
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
| 175 |
-
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 176 |
-
details = "Text generated using greedy decoding"
|
| 177 |
-
|
| 178 |
-
if button_sampling:
|
| 179 |
-
model, tokenizer = setModel(model_checkpoint)
|
| 180 |
-
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 181 |
-
input_ids = tokenized_text.input_ids
|
| 182 |
-
attention_mask = tokenized_text.attention_mask
|
| 183 |
-
length = min(512, len(input_ids[0]) + max_length)
|
| 184 |
-
output = sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, top_k, top_p)
|
| 185 |
-
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 186 |
-
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
|
| 187 |
-
|
| 188 |
-
if button_typical:
|
| 189 |
-
model, tokenizer = setModel(model_checkpoint)
|
| 190 |
-
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
| 191 |
-
input_ids, attention_mask = tokenized_text.input_ids, tokenized_text.attention_mask
|
| 192 |
-
length = min(512, len(input_ids[0]) + max_length)
|
| 193 |
-
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, typical_p)
|
| 194 |
-
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 195 |
-
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
|
| 196 |
-
"""
|
| 197 |
|
| 198 |
text_element = col2.text_area('Text:', height=400, key="text")
|
| 199 |
col2.markdown("""---""")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
+
from time import perf_counter
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
|
| 6 |
st.set_page_config(
|
|
|
|
| 105 |
temperature = st.slider("Temperature", value=1.0, min_value=0.1, max_value=1.0, step=0.1)
|
| 106 |
max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)
|
| 107 |
|
| 108 |
+
# st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")
|
| 109 |
|
| 110 |
|
| 111 |
|
|
|
|
| 130 |
tokenized_text = None
|
| 131 |
|
| 132 |
if button_greedy or button_sampling or button_typical:
|
| 133 |
+
if len(st.session_state['text'].strip()) == 0:
|
| 134 |
+
col2.warning("Please input some text!")
|
| 135 |
+
text_element = col2.text_area('Text:', height=400, key="text")
|
| 136 |
+
st.stop()
|
| 137 |
+
|
| 138 |
model, tokenizer = setModel(model_checkpoint)
|
| 139 |
|
| 140 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
|
|
|
| 150 |
previous_ids = None
|
| 151 |
|
| 152 |
length = min(512, len(input_ids)+max_length)
|
| 153 |
+
timer_mark = perf_counter()
|
| 154 |
+
if button_greedy:
|
| 155 |
+
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
| 156 |
+
details = f"Text generated using greedy decoding in {perf_counter()-timer_mark:.2f}s"
|
| 157 |
+
if button_sampling:
|
| 158 |
+
output = sampling(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length, temperature, top_k, top_p)
|
| 159 |
+
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k}, temperature={temperature:.2f} in {perf_counter()-timer_mark:.2f}s"
|
| 160 |
+
if button_typical:
|
| 161 |
+
output = typical_sampling(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length, temperature, typical_p)
|
| 162 |
+
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f} in {perf_counter()-timer_mark:.2f}s"
|
| 163 |
|
| 164 |
if previous_ids is not None:
|
| 165 |
print(f"\nConcat prev id: "+tokenizer.decode(previous_ids, skip_special_tokens=True))
|
|
|
|
| 169 |
new_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 170 |
|
| 171 |
st.session_state['text'] = new_text
|
|
|
|
| 172 |
|
|
|
|
|
|
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
text_element = col2.text_area('Text:', height=400, key="text")
|
| 176 |
col2.markdown("""---""")
|