Spaces:
Paused
Paused
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import collections | |
| import os | |
| import platform | |
| import re | |
| import socket | |
| from contextlib import contextmanager | |
| from functools import partial, reduce | |
| from types import MethodType | |
| from typing import OrderedDict | |
| import torch | |
| from packaging.version import Version | |
| from safetensors.torch import save_file as safe_save_file | |
| from ..commands.config.default import write_basic_config # noqa: F401 | |
| from ..logging import get_logger | |
| from ..state import PartialState | |
| from .constants import FSDP_PYTORCH_VERSION | |
| from .dataclasses import DistributedType | |
| from .imports import is_deepspeed_available, is_torch_distributed_available, is_torch_xla_available | |
| from .modeling import id_tensor_storage | |
| from .transformer_engine import convert_model | |
| from .versions import is_torch_version | |
| logger = get_logger(__name__) | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| def is_compiled_module(module): | |
| """ | |
| Check whether the module was compiled with torch.compile() | |
| """ | |
| if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"): | |
| return False | |
| return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) | |
| def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True, recursive: bool = False): | |
| """ | |
| Extract a model from its distributed containers. | |
| Args: | |
| model (`torch.nn.Module`): | |
| The model to extract. | |
| keep_fp32_wrapper (`bool`, *optional*): | |
| Whether to remove mixed precision hooks from the model. | |
| recursive (`bool`, *optional*, defaults to `False`): | |
| Whether to recursively extract all cases of `module.module` from `model` as well as unwrap child sublayers | |
| recursively, not just the top-level distributed containers. | |
| Returns: | |
| `torch.nn.Module`: The extracted model. | |
| """ | |
| options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) | |
| is_compiled = is_compiled_module(model) | |
| if is_compiled: | |
| compiled_model = model | |
| model = model._orig_mod | |
| if is_deepspeed_available(): | |
| from deepspeed import DeepSpeedEngine | |
| options += (DeepSpeedEngine,) | |
| if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available(): | |
| from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP | |
| options += (FSDP,) | |
| while isinstance(model, options): | |
| model = model.module | |
| if recursive: | |
| # This is needed in cases such as using FSDPv2 on XLA | |
| def _recursive_unwrap(module): | |
| # Wrapped modules are standardly wrapped as `module`, similar to the cases earlier | |
| # with DDP, DataParallel, DeepSpeed, and FSDP | |
| if hasattr(module, "module"): | |
| unwrapped_module = _recursive_unwrap(module.module) | |
| else: | |
| unwrapped_module = module | |
| # Next unwrap child sublayers recursively | |
| for name, child in unwrapped_module.named_children(): | |
| setattr(unwrapped_module, name, _recursive_unwrap(child)) | |
| return unwrapped_module | |
| # Start with top-level | |
| model = _recursive_unwrap(model) | |
| if not keep_fp32_wrapper: | |
| forward = model.forward | |
| original_forward = model.__dict__.pop("_original_forward", None) | |
| if original_forward is not None: | |
| while hasattr(forward, "__wrapped__"): | |
| forward = forward.__wrapped__ | |
| if forward == original_forward: | |
| break | |
| model.forward = MethodType(forward, model) | |
| if getattr(model, "_converted_to_transformer_engine", False): | |
| convert_model(model, to_transformer_engine=False) | |
| if is_compiled: | |
| compiled_model._orig_mod = model | |
| model = compiled_model | |
| return model | |
| def wait_for_everyone(): | |
| """ | |
| Introduces a blocking point in the script, making sure all processes have reached this point before continuing. | |
| <Tip warning={true}> | |
| Make sure all processes will reach this instruction otherwise one of your processes will hang forever. | |
| </Tip> | |
| """ | |
| PartialState().wait_for_everyone() | |
| def clean_state_dict_for_safetensors(state_dict: dict): | |
| """ | |
| Cleans the state dictionary from a model and removes tensor aliasing if present. | |
| Args: | |
| state_dict (`dict`): | |
| The state dictionary from a model | |
| """ | |
| ptrs = collections.defaultdict(list) | |
| # When bnb serialization is used, weights in state dict can be strings | |
| for name, tensor in state_dict.items(): | |
| if not isinstance(tensor, str): | |
| ptrs[id_tensor_storage(tensor)].append(name) | |
| # These are all pointers of tensors with shared memory | |
| shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1} | |
| warn_names = set() | |
| for names in shared_ptrs.values(): | |
| # When not all duplicates have been cleaned, we still remove those keys but put a clear warning. | |
| # If the link between tensors was done at runtime then `from_pretrained` will not get | |
| # the key back leading to random tensor. A proper warning will be shown | |
| # during reload (if applicable), but since the file is not necessarily compatible with | |
| # the config, better show a proper warning. | |
| found_names = [name for name in names if name in state_dict] | |
| warn_names.update(found_names[1:]) | |
| for name in found_names[1:]: | |
| del state_dict[name] | |
| if len(warn_names) > 0: | |
| logger.warning( | |
| f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading", | |
| ) | |
| state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()} | |
| return state_dict | |
| def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False): | |
| """ | |
| Save the data to disk. Use in place of `torch.save()`. | |
| Args: | |
| obj: | |
| The data to save | |
| f: | |
| The file (or file-like object) to use to save the data | |
| save_on_each_node (`bool`, *optional*, defaults to `False`): | |
| Whether to only save on the global main process | |
| safe_serialization (`bool`, *optional*, defaults to `False`): | |
| Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`). | |
| """ | |
| # When TorchXLA is enabled, it's necessary to transfer all data to the CPU before saving. | |
| # Another issue arises with `id_tensor_storage`, which treats all XLA tensors as identical. | |
| # If tensors remain on XLA, calling `clean_state_dict_for_safetensors` will result in only | |
| # one XLA tensor remaining. | |
| if PartialState().distributed_type == DistributedType.XLA: | |
| obj = xm._maybe_convert_to_cpu(obj) | |
| # Check if it's a model and remove duplicates | |
| if safe_serialization: | |
| save_func = partial(safe_save_file, metadata={"format": "pt"}) | |
| if isinstance(obj, OrderedDict): | |
| obj = clean_state_dict_for_safetensors(obj) | |
| else: | |
| save_func = torch.save | |
| if PartialState().is_main_process and not save_on_each_node: | |
| save_func(obj, f) | |
| elif PartialState().is_local_main_process and save_on_each_node: | |
| save_func(obj, f) | |
| def clear_environment(): | |
| """ | |
| A context manager that will temporarily clear environment variables. | |
| When this context exits, the previous environment variables will be back. | |
| Example: | |
| ```python | |
| >>> import os | |
| >>> from accelerate.utils import clear_environment | |
| >>> os.environ["FOO"] = "bar" | |
| >>> with clear_environment(): | |
| ... print(os.environ) | |
| ... os.environ["FOO"] = "new_bar" | |
| ... print(os.environ["FOO"]) | |
| {} | |
| new_bar | |
| >>> print(os.environ["FOO"]) | |
| bar | |
| ``` | |
| """ | |
| _old_os_environ = os.environ.copy() | |
| os.environ.clear() | |
| try: | |
| yield | |
| finally: | |
| os.environ.clear() # clear any added keys, | |
| os.environ.update(_old_os_environ) # then restore previous environment | |
| def patch_environment(**kwargs): | |
| """ | |
| A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting. | |
| Will convert the values in `kwargs` to strings and upper-case all the keys. | |
| Example: | |
| ```python | |
| >>> import os | |
| >>> from accelerate.utils import patch_environment | |
| >>> with patch_environment(FOO="bar"): | |
| ... print(os.environ["FOO"]) # prints "bar" | |
| >>> print(os.environ["FOO"]) # raises KeyError | |
| ``` | |
| """ | |
| existing_vars = {} | |
| for key, value in kwargs.items(): | |
| key = key.upper() | |
| if key in os.environ: | |
| existing_vars[key] = os.environ[key] | |
| os.environ[key] = str(value) | |
| try: | |
| yield | |
| finally: | |
| for key in kwargs: | |
| key = key.upper() | |
| if key in existing_vars: | |
| # restore previous value | |
| os.environ[key] = existing_vars[key] | |
| else: | |
| os.environ.pop(key, None) | |
| def get_pretty_name(obj): | |
| """ | |
| Gets a pretty name from `obj`. | |
| """ | |
| if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): | |
| obj = getattr(obj, "__class__", obj) | |
| if hasattr(obj, "__qualname__"): | |
| return obj.__qualname__ | |
| if hasattr(obj, "__name__"): | |
| return obj.__name__ | |
| return str(obj) | |
| def merge_dicts(source, destination): | |
| """ | |
| Recursively merges two dictionaries. | |
| Args: | |
| source (`dict`): The dictionary to merge into `destination`. | |
| destination (`dict`): The dictionary to merge `source` into. | |
| """ | |
| for key, value in source.items(): | |
| if isinstance(value, dict): | |
| node = destination.setdefault(key, {}) | |
| merge_dicts(value, node) | |
| else: | |
| destination[key] = value | |
| return destination | |
| def is_port_in_use(port: int = None) -> bool: | |
| """ | |
| Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been | |
| run and need to see if the port is already in use. | |
| """ | |
| if port is None: | |
| port = 29500 | |
| with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
| return s.connect_ex(("localhost", port)) == 0 | |
| def convert_bytes(size): | |
| "Converts `size` from bytes to the largest possible unit" | |
| for x in ["bytes", "KB", "MB", "GB", "TB"]: | |
| if size < 1024.0: | |
| return f"{round(size, 2)} {x}" | |
| size /= 1024.0 | |
| return f"{round(size, 2)} PB" | |
| def check_os_kernel(): | |
| """Warns if the kernel version is below the recommended minimum on Linux.""" | |
| # see issue #1929 | |
| info = platform.uname() | |
| system = info.system | |
| if system != "Linux": | |
| return | |
| _, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release) | |
| min_version = "5.5.0" | |
| if Version(version) < Version(min_version): | |
| msg = ( | |
| f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can " | |
| "cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher." | |
| ) | |
| logger.warning(msg, main_process_only=True) | |
| def recursive_getattr(obj, attr: str): | |
| """ | |
| Recursive `getattr`. | |
| Args: | |
| obj: | |
| A class instance holding the attribute. | |
| attr (`str`): | |
| The attribute that is to be retrieved, e.g. 'attribute1.attribute2'. | |
| """ | |
| def _getattr(obj, attr): | |
| return getattr(obj, attr) | |
| return reduce(_getattr, [obj] + attr.split(".")) | |