Spaces:
Paused
Paused
| try: | |
| import cython | |
| except (AttributeError, ImportError): | |
| # if cython not installed, use mock module with no-op decorators and types | |
| from fontTools.misc import cython | |
| COMPILED = cython.compiled | |
| from typing import ( | |
| Sequence, | |
| Tuple, | |
| Union, | |
| ) | |
| from numbers import Integral, Real | |
| _Point = Tuple[Real, Real] | |
| _Delta = Tuple[Real, Real] | |
| _PointSegment = Sequence[_Point] | |
| _DeltaSegment = Sequence[_Delta] | |
| _DeltaOrNone = Union[_Delta, None] | |
| _DeltaOrNoneSegment = Sequence[_DeltaOrNone] | |
| _Endpoints = Sequence[Integral] | |
| MAX_LOOKBACK = 8 | |
| def iup_segment( | |
| coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta | |
| ): # -> _DeltaSegment: | |
| """Given two reference coordinates `rc1` & `rc2` and their respective | |
| delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of | |
| coordinates `coords`.""" | |
| # rc1 = reference coord 1 | |
| # rd1 = reference delta 1 | |
| out_arrays = [None, None] | |
| for j in 0, 1: | |
| out_arrays[j] = out = [] | |
| x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j] | |
| if x1 == x2: | |
| n = len(coords) | |
| if d1 == d2: | |
| out.extend([d1] * n) | |
| else: | |
| out.extend([0] * n) | |
| continue | |
| if x1 > x2: | |
| x1, x2 = x2, x1 | |
| d1, d2 = d2, d1 | |
| # x1 < x2 | |
| scale = (d2 - d1) / (x2 - x1) | |
| for pair in coords: | |
| x = pair[j] | |
| if x <= x1: | |
| d = d1 | |
| elif x >= x2: | |
| d = d2 | |
| else: | |
| # Interpolate | |
| # | |
| # NOTE: we assign an explicit intermediate variable here in | |
| # order to disable a fused mul-add optimization. See: | |
| # | |
| # - https://godbolt.org/z/YsP4T3TqK, | |
| # - https://github.com/fonttools/fonttools/issues/3703 | |
| nudge = (x - x1) * scale | |
| d = d1 + nudge | |
| out.append(d) | |
| return zip(*out_arrays) | |
| def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment: | |
| """For the contour given in `coords`, interpolate any missing | |
| delta values in delta vector `deltas`. | |
| Returns fully filled-out delta vector.""" | |
| assert len(deltas) == len(coords) | |
| if None not in deltas: | |
| return deltas | |
| n = len(deltas) | |
| # indices of points with explicit deltas | |
| indices = [i for i, v in enumerate(deltas) if v is not None] | |
| if not indices: | |
| # All deltas are None. Return 0,0 for all. | |
| return [(0, 0)] * n | |
| out = [] | |
| it = iter(indices) | |
| start = next(it) | |
| if start != 0: | |
| # Initial segment that wraps around | |
| i1, i2, ri1, ri2 = 0, start, start, indices[-1] | |
| out.extend( | |
| iup_segment( | |
| coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] | |
| ) | |
| ) | |
| out.append(deltas[start]) | |
| for end in it: | |
| if end - start > 1: | |
| i1, i2, ri1, ri2 = start + 1, end, start, end | |
| out.extend( | |
| iup_segment( | |
| coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] | |
| ) | |
| ) | |
| out.append(deltas[end]) | |
| start = end | |
| if start != n - 1: | |
| # Final segment that wraps around | |
| i1, i2, ri1, ri2 = start + 1, n, start, indices[0] | |
| out.extend( | |
| iup_segment( | |
| coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2] | |
| ) | |
| ) | |
| assert len(deltas) == len(out), (len(deltas), len(out)) | |
| return out | |
| def iup_delta( | |
| deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints | |
| ) -> _DeltaSegment: | |
| """For the outline given in `coords`, with contour endpoints given | |
| in sorted increasing order in `ends`, interpolate any missing | |
| delta values in delta vector `deltas`. | |
| Returns fully filled-out delta vector.""" | |
| assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4 | |
| n = len(coords) | |
| ends = ends + [n - 4, n - 3, n - 2, n - 1] | |
| out = [] | |
| start = 0 | |
| for end in ends: | |
| end += 1 | |
| contour = iup_contour(deltas[start:end], coords[start:end]) | |
| out.extend(contour) | |
| start = end | |
| return out | |
| # Optimizer | |
| def can_iup_in_between( | |
| deltas: _DeltaSegment, | |
| coords: _PointSegment, | |
| i: Integral, | |
| j: Integral, | |
| tolerance: Real, | |
| ): # -> bool: | |
| """Return true if the deltas for points at `i` and `j` (`i < j`) can be | |
| successfully used to interpolate deltas for points in between them within | |
| provided error tolerance.""" | |
| assert j - i >= 2 | |
| interp = iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j]) | |
| deltas = deltas[i + 1 : j] | |
| return all( | |
| abs(complex(x - p, y - q)) <= tolerance | |
| for (x, y), (p, q) in zip(deltas, interp) | |
| ) | |
| def _iup_contour_bound_forced_set( | |
| deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0 | |
| ) -> set: | |
| """The forced set is a conservative set of points on the contour that must be encoded | |
| explicitly (ie. cannot be interpolated). Calculating this set allows for significantly | |
| speeding up the dynamic-programming, as well as resolve circularity in DP. | |
| The set is precise; that is, if an index is in the returned set, then there is no way | |
| that IUP can generate delta for that point, given `coords` and `deltas`. | |
| """ | |
| assert len(deltas) == len(coords) | |
| n = len(deltas) | |
| forced = set() | |
| # Track "last" and "next" points on the contour as we sweep. | |
| for i in range(len(deltas) - 1, -1, -1): | |
| ld, lc = deltas[i - 1], coords[i - 1] | |
| d, c = deltas[i], coords[i] | |
| nd, nc = deltas[i - n + 1], coords[i - n + 1] | |
| for j in (0, 1): # For X and for Y | |
| cj = c[j] | |
| dj = d[j] | |
| lcj = lc[j] | |
| ldj = ld[j] | |
| ncj = nc[j] | |
| ndj = nd[j] | |
| if lcj <= ncj: | |
| c1, c2 = lcj, ncj | |
| d1, d2 = ldj, ndj | |
| else: | |
| c1, c2 = ncj, lcj | |
| d1, d2 = ndj, ldj | |
| force = False | |
| # If the two coordinates are the same, then the interpolation | |
| # algorithm produces the same delta if both deltas are equal, | |
| # and zero if they differ. | |
| # | |
| # This test has to be before the next one. | |
| if c1 == c2: | |
| if abs(d1 - d2) > tolerance and abs(dj) > tolerance: | |
| force = True | |
| # If coordinate for current point is between coordinate of adjacent | |
| # points on the two sides, but the delta for current point is NOT | |
| # between delta for those adjacent points (considering tolerance | |
| # allowance), then there is no way that current point can be IUP-ed. | |
| # Mark it forced. | |
| elif c1 <= cj <= c2: # and c1 != c2 | |
| if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance): | |
| force = True | |
| # Otherwise, the delta should either match the closest, or have the | |
| # same sign as the interpolation of the two deltas. | |
| else: # cj < c1 or c2 < cj | |
| if d1 != d2: | |
| if cj < c1: | |
| if ( | |
| abs(dj) > tolerance | |
| and abs(dj - d1) > tolerance | |
| and ((dj - tolerance < d1) != (d1 < d2)) | |
| ): | |
| force = True | |
| else: # c2 < cj | |
| if ( | |
| abs(dj) > tolerance | |
| and abs(dj - d2) > tolerance | |
| and ((d2 < dj + tolerance) != (d1 < d2)) | |
| ): | |
| force = True | |
| if force: | |
| forced.add(i) | |
| break | |
| return forced | |
| def _iup_contour_optimize_dp( | |
| deltas: _DeltaSegment, | |
| coords: _PointSegment, | |
| forced=set(), | |
| tolerance: Real = 0, | |
| lookback: Integral = None, | |
| ): | |
| """Straightforward Dynamic-Programming. For each index i, find least-costly encoding of | |
| points 0 to i where i is explicitly encoded. We find this by considering all previous | |
| explicit points j and check whether interpolation can fill points between j and i. | |
| Note that solution always encodes last point explicitly. Higher-level is responsible | |
| for removing that restriction. | |
| As major speedup, we stop looking further whenever we see a "forced" point.""" | |
| n = len(deltas) | |
| if lookback is None: | |
| lookback = n | |
| lookback = min(lookback, MAX_LOOKBACK) | |
| costs = {-1: 0} | |
| chain = {-1: None} | |
| for i in range(0, n): | |
| best_cost = costs[i - 1] + 1 | |
| costs[i] = best_cost | |
| chain[i] = i - 1 | |
| if i - 1 in forced: | |
| continue | |
| for j in range(i - 2, max(i - lookback, -2), -1): | |
| cost = costs[j] + 1 | |
| if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance): | |
| costs[i] = best_cost = cost | |
| chain[i] = j | |
| if j in forced: | |
| break | |
| return chain, costs | |
| def _rot_list(l: list, k: int): | |
| """Rotate list by k items forward. Ie. item at position 0 will be | |
| at position k in returned list. Negative k is allowed.""" | |
| n = len(l) | |
| k %= n | |
| if not k: | |
| return l | |
| return l[n - k :] + l[: n - k] | |
| def _rot_set(s: set, k: int, n: int): | |
| k %= n | |
| if not k: | |
| return s | |
| return {(v + k) % n for v in s} | |
| def iup_contour_optimize( | |
| deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0 | |
| ) -> _DeltaOrNoneSegment: | |
| """For contour with coordinates `coords`, optimize a set of delta | |
| values `deltas` within error `tolerance`. | |
| Returns delta vector that has most number of None items instead of | |
| the input delta. | |
| """ | |
| n = len(deltas) | |
| # Get the easy cases out of the way: | |
| # If all are within tolerance distance of 0, encode nothing: | |
| if all(abs(complex(*p)) <= tolerance for p in deltas): | |
| return [None] * n | |
| # If there's exactly one point, return it: | |
| if n == 1: | |
| return deltas | |
| # If all deltas are exactly the same, return just one (the first one): | |
| d0 = deltas[0] | |
| if all(d0 == d for d in deltas): | |
| return [d0] + [None] * (n - 1) | |
| # Else, solve the general problem using Dynamic Programming. | |
| forced = _iup_contour_bound_forced_set(deltas, coords, tolerance) | |
| # The _iup_contour_optimize_dp() routine returns the optimal encoding | |
| # solution given the constraint that the last point is always encoded. | |
| # To remove this constraint, we use two different methods, depending on | |
| # whether forced set is non-empty or not: | |
| # Debugging: Make the next if always take the second branch and observe | |
| # if the font size changes (reduced); that would mean the forced-set | |
| # has members it should not have. | |
| if forced: | |
| # Forced set is non-empty: rotate the contour start point | |
| # such that the last point in the list is a forced point. | |
| k = (n - 1) - max(forced) | |
| assert k >= 0 | |
| deltas = _rot_list(deltas, k) | |
| coords = _rot_list(coords, k) | |
| forced = _rot_set(forced, k, n) | |
| # Debugging: Pass a set() instead of forced variable to the next call | |
| # to exercise forced-set computation for under-counting. | |
| chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance) | |
| # Assemble solution. | |
| solution = set() | |
| i = n - 1 | |
| while i is not None: | |
| solution.add(i) | |
| i = chain[i] | |
| solution.remove(-1) | |
| # if not forced <= solution: | |
| # print("coord", coords) | |
| # print("deltas", deltas) | |
| # print("len", len(deltas)) | |
| assert forced <= solution, (forced, solution) | |
| deltas = [deltas[i] if i in solution else None for i in range(n)] | |
| deltas = _rot_list(deltas, -k) | |
| else: | |
| # Repeat the contour an extra time, solve the new case, then look for solutions of the | |
| # circular n-length problem in the solution for new linear case. I cannot prove that | |
| # this always produces the optimal solution... | |
| chain, costs = _iup_contour_optimize_dp( | |
| deltas + deltas, coords + coords, forced, tolerance, n | |
| ) | |
| best_sol, best_cost = None, n + 1 | |
| for start in range(n - 1, len(costs) - 1): | |
| # Assemble solution. | |
| solution = set() | |
| i = start | |
| while i > start - n: | |
| solution.add(i % n) | |
| i = chain[i] | |
| if i == start - n: | |
| cost = costs[start] - costs[start - n] | |
| if cost <= best_cost: | |
| best_sol, best_cost = solution, cost | |
| # if not forced <= best_sol: | |
| # print("coord", coords) | |
| # print("deltas", deltas) | |
| # print("len", len(deltas)) | |
| assert forced <= best_sol, (forced, best_sol) | |
| deltas = [deltas[i] if i in best_sol else None for i in range(n)] | |
| return deltas | |
| def iup_delta_optimize( | |
| deltas: _DeltaSegment, | |
| coords: _PointSegment, | |
| ends: _Endpoints, | |
| tolerance: Real = 0.0, | |
| ) -> _DeltaOrNoneSegment: | |
| """For the outline given in `coords`, with contour endpoints given | |
| in sorted increasing order in `ends`, optimize a set of delta | |
| values `deltas` within error `tolerance`. | |
| Returns delta vector that has most number of None items instead of | |
| the input delta. | |
| """ | |
| assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4 | |
| n = len(coords) | |
| ends = ends + [n - 4, n - 3, n - 2, n - 1] | |
| out = [] | |
| start = 0 | |
| for end in ends: | |
| contour = iup_contour_optimize( | |
| deltas[start : end + 1], coords[start : end + 1], tolerance | |
| ) | |
| assert len(contour) == end - start + 1 | |
| out.extend(contour) | |
| start = end + 1 | |
| return out | |