Spaces:
Runtime error
Runtime error
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| _get_model_file, | |
| delete_adapter_layers, | |
| is_accelerate_available, | |
| logging, | |
| set_adapter_layers, | |
| set_weights_and_activate_adapters, | |
| ) | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.autograd.function import Function | |
| import torch.nn as nn | |
| from torch import einsum | |
| import os | |
| from collections import defaultdict | |
| from contextlib import nullcontext | |
| from typing import Callable, Dict, List, Optional, Union | |
| from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.models.embeddings import ImageProjection | |
| from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta | |
| import math | |
| from einops import rearrange | |
| from diffusers.image_processor import IPAdapterMaskProcessor | |
| xformers_available = False | |
| try: | |
| import xformers | |
| xformers_available = True | |
| except ImportError: | |
| pass | |
| EPSILON = 1e-6 | |
| exists = lambda val: val is not None | |
| default = lambda val, d: val if exists(val) else d | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_attention_scores(attn, query, key, attention_mask=None): | |
| if attn.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| if attention_mask is None: | |
| baddbmm_input = torch.empty( | |
| query.shape[0], | |
| query.shape[1], | |
| key.shape[1], | |
| dtype=query.dtype, | |
| device=query.device, | |
| ) | |
| beta = 0 | |
| else: | |
| baddbmm_input = attention_mask | |
| beta = 1 | |
| attention_scores = torch.baddbmm( | |
| baddbmm_input, | |
| query, | |
| key.transpose(-1, -2), | |
| beta=beta, | |
| alpha=attn.scale, | |
| ) | |
| del baddbmm_input | |
| if attn.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| return attention_scores.to(query.dtype) | |
| # Get attention_score with this: | |
| def scaled_dot_product_attention_regionstate(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None,weight_func =None, region_state = None, sigma = None) -> torch.Tensor: | |
| # Efficient implementation equivalent to the following: | |
| L, S = query.size(-2), key.size(-2) | |
| scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale | |
| attn_bias = torch.zeros(L, S, dtype=query.dtype,device = query.device) | |
| if is_causal: | |
| assert attn_mask is None | |
| temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) | |
| attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) | |
| attn_bias.to(query.dtype) | |
| if attn_mask is not None: | |
| if attn_mask.dtype == torch.bool: | |
| attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
| else: | |
| attn_bias += attn_mask | |
| attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
| attn_weight += attn_bias | |
| batch_size, num_heads, sequence_length, embed_dim = attn_weight.shape | |
| attn_weight = attn_weight.reshape((-1,sequence_length,embed_dim)) | |
| cross_attention_weight = weight_func(region_state, sigma, attn_weight) | |
| repeat_time = attn_weight.shape[0]//cross_attention_weight.shape[0] | |
| attn_weight += torch.repeat_interleave( | |
| cross_attention_weight, repeats=repeat_time, dim=0 | |
| ) | |
| attn_weight = attn_weight.reshape((-1,num_heads,sequence_length,embed_dim)) | |
| attn_weight = torch.softmax(attn_weight, dim=-1) | |
| attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
| return attn_weight @ value | |
| class FlashAttentionFunction(Function): | |
| def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): | |
| """Algorithm 2 in the paper""" | |
| device = q.device | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| o = torch.zeros_like(q) | |
| all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device) | |
| all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device) | |
| scale = q.shape[-1] ** -0.5 | |
| if not exists(mask): | |
| mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) | |
| else: | |
| mask = rearrange(mask, "b n -> b 1 1 n") | |
| mask = mask.split(q_bucket_size, dim=-1) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| mask, | |
| all_row_sums.split(q_bucket_size, dim=-2), | |
| all_row_maxes.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if exists(row_mask): | |
| attn_weights.masked_fill_(~row_mask, max_neg_value) | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones( | |
| (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
| ).triu(q_start_index - k_start_index + 1) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) | |
| attn_weights -= block_row_maxes | |
| exp_weights = torch.exp(attn_weights) | |
| if exists(row_mask): | |
| exp_weights.masked_fill_(~row_mask, 0.0) | |
| block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp( | |
| min=EPSILON | |
| ) | |
| new_row_maxes = torch.maximum(block_row_maxes, row_maxes) | |
| exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc) | |
| exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) | |
| exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) | |
| new_row_sums = ( | |
| exp_row_max_diff * row_sums | |
| + exp_block_row_max_diff * block_row_sums | |
| ) | |
| oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_( | |
| (exp_block_row_max_diff / new_row_sums) * exp_values | |
| ) | |
| row_maxes.copy_(new_row_maxes) | |
| row_sums.copy_(new_row_sums) | |
| lse = all_row_sums.log() + all_row_maxes | |
| ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) | |
| ctx.save_for_backward(q, k, v, o, lse) | |
| return o | |
| def backward(ctx, do): | |
| """Algorithm 4 in the paper""" | |
| causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args | |
| q, k, v, o, lse = ctx.saved_tensors | |
| device = q.device | |
| max_neg_value = -torch.finfo(q.dtype).max | |
| qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) | |
| dq = torch.zeros_like(q) | |
| dk = torch.zeros_like(k) | |
| dv = torch.zeros_like(v) | |
| row_splits = zip( | |
| q.split(q_bucket_size, dim=-2), | |
| o.split(q_bucket_size, dim=-2), | |
| do.split(q_bucket_size, dim=-2), | |
| mask, | |
| lse.split(q_bucket_size, dim=-2), | |
| dq.split(q_bucket_size, dim=-2), | |
| ) | |
| for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits): | |
| q_start_index = ind * q_bucket_size - qk_len_diff | |
| col_splits = zip( | |
| k.split(k_bucket_size, dim=-2), | |
| v.split(k_bucket_size, dim=-2), | |
| dk.split(k_bucket_size, dim=-2), | |
| dv.split(k_bucket_size, dim=-2), | |
| ) | |
| for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): | |
| k_start_index = k_ind * k_bucket_size | |
| attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale | |
| if causal and q_start_index < (k_start_index + k_bucket_size - 1): | |
| causal_mask = torch.ones( | |
| (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device | |
| ).triu(q_start_index - k_start_index + 1) | |
| attn_weights.masked_fill_(causal_mask, max_neg_value) | |
| p = torch.exp(attn_weights - lsec) | |
| if exists(row_mask): | |
| p.masked_fill_(~row_mask, 0.0) | |
| dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc) | |
| dp = einsum("... i d, ... j d -> ... i j", doc, vc) | |
| D = (doc * oc).sum(dim=-1, keepdims=True) | |
| ds = p * scale * (dp - D) | |
| dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc) | |
| dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc) | |
| dqc.add_(dq_chunk) | |
| dkc.add_(dk_chunk) | |
| dvc.add_(dv_chunk) | |
| return dq, dk, dv, None, None, None, None | |
| class AttnProcessor(nn.Module): | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb: Optional[torch.Tensor] = None, | |
| region_prompt = None, | |
| ip_adapter_masks = None, | |
| *args, | |
| **kwargs, | |
| ): | |
| if len(args) > 0 or kwargs.get("scale", None) is not None: | |
| deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
| deprecate("scale", "1.0.0", deprecation_message) | |
| residual = hidden_states | |
| #_,img_sequence_length,_ = hidden_states.shape | |
| img_sequence_length = hidden_states.shape[1] | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| is_xattn = False | |
| if encoder_hidden_states is not None and region_prompt is not None: | |
| is_xattn = True | |
| region_state = region_prompt["region_state"] | |
| weight_func = region_prompt["weight_func"] | |
| sigma = region_prompt["sigma"] | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length,batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| if is_xattn and isinstance(region_state, dict): | |
| # use torch.baddbmm method (slow) | |
| attention_scores = get_attention_scores(attn, query, key, attention_mask) | |
| cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores) | |
| attention_scores += torch.repeat_interleave( | |
| cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0 | |
| ) | |
| # calc probs | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| attention_probs = attention_probs.to(query.dtype) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| elif xformers_available: | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attn_bias=attention_mask, | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| '''q_bucket_size = 512 | |
| k_bucket_size = 1024 | |
| # use flash-attention | |
| hidden_states = FlashAttentionFunction.apply( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attention_mask, | |
| False, | |
| q_bucket_size, | |
| k_bucket_size, | |
| )''' | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAdapterAttnProcessor(nn.Module): | |
| r""" | |
| Attention processor for Multiple IP-Adapters. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): | |
| The context length of the image features. | |
| scale (`float` or List[`float`], defaults to 1.0): | |
| the weight scale of image prompt. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| if not isinstance(num_tokens, (tuple, list)): | |
| num_tokens = [num_tokens] | |
| self.num_tokens = num_tokens | |
| if not isinstance(scale, list): | |
| scale = [scale] * len(num_tokens) | |
| if len(scale) != len(num_tokens): | |
| raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") | |
| self.scale = scale | |
| self.to_k_ip = nn.ModuleList( | |
| [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] | |
| ) | |
| self.to_v_ip = nn.ModuleList( | |
| [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] | |
| ) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| scale=1.0, | |
| region_prompt = None, | |
| ip_adapter_masks = None, | |
| ): | |
| #_,img_sequence_length,_ = hidden_states.shape | |
| img_sequence_length= hidden_states.shape[1] | |
| residual = hidden_states | |
| is_xattn = False | |
| if encoder_hidden_states is not None and region_prompt is not None: | |
| is_xattn = True | |
| region_state = region_prompt["region_state"] | |
| weight_func = region_prompt["weight_func"] | |
| sigma = region_prompt["sigma"] | |
| # separate ip_hidden_states from encoder_hidden_states | |
| if encoder_hidden_states is not None: | |
| if isinstance(encoder_hidden_states, tuple): | |
| encoder_hidden_states, ip_hidden_states = encoder_hidden_states | |
| else: | |
| deprecation_message = ( | |
| "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." | |
| " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." | |
| ) | |
| deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| [encoder_hidden_states[:, end_pos:, :]], | |
| ) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| if is_xattn and isinstance(region_state, dict): | |
| # use torch.baddbmm method (slow) | |
| attention_scores = get_attention_scores(attn, query, key, attention_mask) | |
| cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores) | |
| attention_scores += torch.repeat_interleave( | |
| cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0 | |
| ) | |
| # calc probs | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| attention_probs = attention_probs.to(query.dtype) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| elif xformers_available: | |
| hidden_states = xformers.ops.memory_efficient_attention( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attn_bias=attention_mask, | |
| ) | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| '''q_bucket_size = 512 | |
| k_bucket_size = 1024 | |
| # use flash-attention | |
| hidden_states = FlashAttentionFunction.apply( | |
| query.contiguous(), | |
| key.contiguous(), | |
| value.contiguous(), | |
| attention_mask, | |
| False, | |
| q_bucket_size, | |
| k_bucket_size, | |
| )''' | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| '''# for ip-adapter | |
| for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( | |
| ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip | |
| ): | |
| ip_key = to_k_ip(current_ip_hidden_states) | |
| ip_value = to_v_ip(current_ip_hidden_states) | |
| ip_key = attn.head_to_batch_dim(ip_key) | |
| ip_value = attn.head_to_batch_dim(ip_value) | |
| if xformers_available: | |
| current_ip_hidden_states = xformers.ops.memory_efficient_attention( | |
| query.contiguous(), | |
| ip_key.contiguous(), | |
| ip_value.contiguous(), | |
| attn_bias=None, | |
| ) | |
| current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) | |
| else: | |
| ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
| current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
| current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) | |
| current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) | |
| hidden_states = hidden_states + scale * current_ip_hidden_states''' | |
| #control region apply ip-adapter | |
| if ip_adapter_masks is not None: | |
| if not isinstance(ip_adapter_masks, List): | |
| # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] | |
| ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) | |
| if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): | |
| raise ValueError( | |
| f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " | |
| f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " | |
| f"({len(ip_hidden_states)})" | |
| ) | |
| else: | |
| for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): | |
| if not isinstance(mask, torch.Tensor) or mask.ndim != 4: | |
| raise ValueError( | |
| "Each element of the ip_adapter_masks array should be a tensor with shape " | |
| "[1, num_images_for_ip_adapter, height, width]." | |
| " Please use `IPAdapterMaskProcessor` to preprocess your mask" | |
| ) | |
| if mask.shape[1] != ip_state.shape[1]: | |
| raise ValueError( | |
| f"Number of masks ({mask.shape[1]}) does not match " | |
| f"number of ip images ({ip_state.shape[1]}) at index {index}" | |
| ) | |
| if isinstance(scale, list) and not len(scale) == mask.shape[1]: | |
| raise ValueError( | |
| f"Number of masks ({mask.shape[1]}) does not match " | |
| f"number of scales ({len(scale)}) at index {index}" | |
| ) | |
| else: | |
| ip_adapter_masks = [None] * len(self.scale) | |
| # for ip-adapter | |
| for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( | |
| ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks | |
| ): | |
| skip = False | |
| if isinstance(scale, list): | |
| if all(s == 0 for s in scale): | |
| skip = True | |
| elif scale == 0: | |
| skip = True | |
| if not skip: | |
| if mask is not None: | |
| if not isinstance(scale, list): | |
| scale = [scale] * mask.shape[1] | |
| current_num_images = mask.shape[1] | |
| for i in range(current_num_images): | |
| ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) | |
| ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) | |
| ip_key = attn.head_to_batch_dim(ip_key) | |
| ip_value = attn.head_to_batch_dim(ip_value) | |
| ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
| _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
| _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) | |
| mask_downsample = IPAdapterMaskProcessor.downsample( | |
| mask[:, i, :, :], | |
| batch_size, | |
| _current_ip_hidden_states.shape[1], | |
| _current_ip_hidden_states.shape[2], | |
| ) | |
| mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) | |
| hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) | |
| else: | |
| ip_key = to_k_ip(current_ip_hidden_states) | |
| ip_value = to_v_ip(current_ip_hidden_states) | |
| ip_key = attn.head_to_batch_dim(ip_key) | |
| ip_value = attn.head_to_batch_dim(ip_value) | |
| ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
| current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
| current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) | |
| hidden_states = hidden_states + scale * current_ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class AttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| temb: Optional[torch.Tensor] = None, | |
| region_prompt = None, | |
| ip_adapter_masks = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| if len(args) > 0 or kwargs.get("scale", None) is not None: | |
| deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
| deprecate("scale", "1.0.0", deprecation_message) | |
| residual = hidden_states | |
| #_,img_sequence_length,_ = hidden_states.shape | |
| img_sequence_length= hidden_states.shape[1] | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| is_xattn = False | |
| if encoder_hidden_states is not None and region_prompt is not None: | |
| is_xattn = True | |
| region_state = region_prompt["region_state"] | |
| weight_func = region_prompt["weight_func"] | |
| sigma = region_prompt["sigma"] | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| if is_xattn and isinstance(region_state, dict): | |
| #w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2) | |
| hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma) | |
| else: | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAdapterAttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapter for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): | |
| The context length of the image features. | |
| scale (`float` or `List[float]`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
| ) | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| if not isinstance(num_tokens, (tuple, list)): | |
| num_tokens = [num_tokens] | |
| self.num_tokens = num_tokens | |
| if not isinstance(scale, list): | |
| scale = [scale] * len(num_tokens) | |
| if len(scale) != len(num_tokens): | |
| raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") | |
| self.scale = scale | |
| self.to_k_ip = nn.ModuleList( | |
| [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] | |
| ) | |
| self.to_v_ip = nn.ModuleList( | |
| [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] | |
| ) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| scale=1.0, | |
| region_prompt = None, | |
| ip_adapter_masks = None, | |
| ): | |
| residual = hidden_states | |
| #_,img_sequence_length,_ = hidden_states.shape | |
| img_sequence_length= hidden_states.shape[1] | |
| is_xattn = False | |
| if encoder_hidden_states is not None and region_prompt is not None: | |
| is_xattn = True | |
| region_state = region_prompt["region_state"] | |
| weight_func = region_prompt["weight_func"] | |
| sigma = region_prompt["sigma"] | |
| # separate ip_hidden_states from encoder_hidden_states | |
| if encoder_hidden_states is not None: | |
| if isinstance(encoder_hidden_states, tuple): | |
| encoder_hidden_states, ip_hidden_states = encoder_hidden_states | |
| else: | |
| deprecation_message = ( | |
| "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." | |
| " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." | |
| ) | |
| deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| [encoder_hidden_states[:, end_pos:, :]], | |
| ) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| if is_xattn and isinstance(region_state, dict): | |
| #w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2) | |
| hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma) | |
| else: | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| ''''# for ip-adapter | |
| for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( | |
| ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip | |
| ): | |
| ip_key = to_k_ip(current_ip_hidden_states) | |
| ip_value = to_v_ip(current_ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| current_ip_hidden_states = F.scaled_dot_product_attention( | |
| query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( | |
| batch_size, -1, attn.heads * head_dim | |
| ) | |
| current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) | |
| hidden_states = hidden_states + scale * current_ip_hidden_states''' | |
| if ip_adapter_masks is not None: | |
| if not isinstance(ip_adapter_masks, List): | |
| # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] | |
| ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) | |
| if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): | |
| raise ValueError( | |
| f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " | |
| f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " | |
| f"({len(ip_hidden_states)})" | |
| ) | |
| else: | |
| for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): | |
| if not isinstance(mask, torch.Tensor) or mask.ndim != 4: | |
| raise ValueError( | |
| "Each element of the ip_adapter_masks array should be a tensor with shape " | |
| "[1, num_images_for_ip_adapter, height, width]." | |
| " Please use `IPAdapterMaskProcessor` to preprocess your mask" | |
| ) | |
| if mask.shape[1] != ip_state.shape[1]: | |
| raise ValueError( | |
| f"Number of masks ({mask.shape[1]}) does not match " | |
| f"number of ip images ({ip_state.shape[1]}) at index {index}" | |
| ) | |
| if isinstance(scale, list) and not len(scale) == mask.shape[1]: | |
| raise ValueError( | |
| f"Number of masks ({mask.shape[1]}) does not match " | |
| f"number of scales ({len(scale)}) at index {index}" | |
| ) | |
| else: | |
| ip_adapter_masks = [None] * len(self.scale) | |
| # for ip-adapter | |
| for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( | |
| ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks | |
| ): | |
| skip = False | |
| if isinstance(scale, list): | |
| if all(s == 0 for s in scale): | |
| skip = True | |
| elif scale == 0: | |
| skip = True | |
| if not skip: | |
| if mask is not None: | |
| if not isinstance(scale, list): | |
| scale = [scale] * mask.shape[1] | |
| current_num_images = mask.shape[1] | |
| for i in range(current_num_images): | |
| ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) | |
| ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| _current_ip_hidden_states = F.scaled_dot_product_attention( | |
| query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( | |
| batch_size, -1, attn.heads * head_dim | |
| ) | |
| _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) | |
| mask_downsample = IPAdapterMaskProcessor.downsample( | |
| mask[:, i, :, :], | |
| batch_size, | |
| _current_ip_hidden_states.shape[1], | |
| _current_ip_hidden_states.shape[2], | |
| ) | |
| mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) | |
| hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) | |
| else: | |
| ip_key = to_k_ip(current_ip_hidden_states) | |
| ip_value = to_v_ip(current_ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| current_ip_hidden_states = F.scaled_dot_product_attention( | |
| query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( | |
| batch_size, -1, attn.heads * head_dim | |
| ) | |
| current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) | |
| hidden_states = hidden_states + scale * current_ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |