Spaces:
Sleeping
Sleeping
update changes
Browse files
notebooks/finetune_florence_2_large_on_blood_cell_dataset_40_epochs copy.ipynb
ADDED
|
@@ -0,0 +1,1602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "KVmYbqqUSlCH"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Fine-tuning Florence-2 on Blood Cell Object Detection Dataset"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {
|
| 15 |
+
"id": "z16cfHRE8yi8"
|
| 16 |
+
},
|
| 17 |
+
"source": [
|
| 18 |
+
"## Setup"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {
|
| 25 |
+
"colab": {
|
| 26 |
+
"base_uri": "https://localhost:8080/"
|
| 27 |
+
},
|
| 28 |
+
"id": "_vp9cS2-gXbn",
|
| 29 |
+
"outputId": "85a70762-1fe8-4482-dc7f-552d817b27c7"
|
| 30 |
+
},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"from google.colab import drive\n",
|
| 34 |
+
"drive.mount('/content/drive')"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "markdown",
|
| 39 |
+
"metadata": {
|
| 40 |
+
"id": "mqd30Ndg9dbt"
|
| 41 |
+
},
|
| 42 |
+
"source": [
|
| 43 |
+
"### Configure your API keys\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"To fine-tune Florence-2, you need to provide your HuggingFace Token and Roboflow API key."
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"metadata": {
|
| 51 |
+
"id": "n32nrwCeAEYP"
|
| 52 |
+
},
|
| 53 |
+
"source": [
|
| 54 |
+
"### Select the runtime\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"Let's make sure that we have access to GPU. We can use `nvidia-smi` command to do that. In case of any problems navigate to `Edit` -> `Notebook settings` -> `Hardware accelerator`, set it to `L4 GPU`, and then click `Save`."
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"execution_count": null,
|
| 62 |
+
"metadata": {
|
| 63 |
+
"colab": {
|
| 64 |
+
"base_uri": "https://localhost:8080/"
|
| 65 |
+
},
|
| 66 |
+
"id": "rMmBuhiiC2mX",
|
| 67 |
+
"outputId": "e0c91cc2-104c-4826-a4e8-3ddff36488f5"
|
| 68 |
+
},
|
| 69 |
+
"outputs": [],
|
| 70 |
+
"source": [
|
| 71 |
+
"!nvidia-smi"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "markdown",
|
| 76 |
+
"metadata": {
|
| 77 |
+
"id": "dOshHQM3Ebq5"
|
| 78 |
+
},
|
| 79 |
+
"source": [
|
| 80 |
+
"### Download example data\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"**NOTE:** Feel free to replace our example image with your own photo."
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": null,
|
| 88 |
+
"metadata": {
|
| 89 |
+
"colab": {
|
| 90 |
+
"base_uri": "https://localhost:8080/"
|
| 91 |
+
},
|
| 92 |
+
"id": "u3ZhBCTPEnEO",
|
| 93 |
+
"outputId": "99bd166b-dda7-4b85-bf22-4824ab643a5a"
|
| 94 |
+
},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"image_url=\"https://huggingface.co/spaces/dwb2023/omniscience/resolve/main/examples/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg\"\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"# get image_url and write it to /content/source_img.jpg\n",
|
| 100 |
+
"!wget -O /content/source_img.jpg $image_url"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"metadata": {
|
| 107 |
+
"id": "PbglpBOOFCHm"
|
| 108 |
+
},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"EXAMPLE_IMAGE_PATH = \"/content/source_img.jpg\""
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "markdown",
|
| 116 |
+
"metadata": {
|
| 117 |
+
"id": "GM4QlaUfCFsv"
|
| 118 |
+
},
|
| 119 |
+
"source": [
|
| 120 |
+
"## Download and configure the model\n",
|
| 121 |
+
"\n",
|
| 122 |
+
" Let's download the model checkpoint and configure it so that you can fine-tune it later on."
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {
|
| 129 |
+
"colab": {
|
| 130 |
+
"base_uri": "https://localhost:8080/"
|
| 131 |
+
},
|
| 132 |
+
"id": "Y6b1dvjgYXOD",
|
| 133 |
+
"outputId": "e62ff6f2-4820-443b-88ab-9d0f9041ab48"
|
| 134 |
+
},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"!pip install -q transformers flash_attn timm einops peft\n",
|
| 138 |
+
"!pip install -q roboflow git+https://github.com/roboflow/supervision.git"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": null,
|
| 144 |
+
"metadata": {
|
| 145 |
+
"id": "HMd6tb4sSh9G"
|
| 146 |
+
},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"# @title Imports\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"import io\n",
|
| 152 |
+
"import os\n",
|
| 153 |
+
"import re\n",
|
| 154 |
+
"import json\n",
|
| 155 |
+
"import torch\n",
|
| 156 |
+
"import html\n",
|
| 157 |
+
"import base64\n",
|
| 158 |
+
"import itertools\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"import numpy as np\n",
|
| 161 |
+
"import supervision as sv\n",
|
| 162 |
+
"\n",
|
| 163 |
+
"from google.colab import userdata\n",
|
| 164 |
+
"from IPython.core.display import display, HTML\n",
|
| 165 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 166 |
+
"from transformers import (\n",
|
| 167 |
+
" AdamW,\n",
|
| 168 |
+
" AutoModelForCausalLM,\n",
|
| 169 |
+
" AutoProcessor,\n",
|
| 170 |
+
" get_scheduler\n",
|
| 171 |
+
")\n",
|
| 172 |
+
"from tqdm import tqdm\n",
|
| 173 |
+
"from typing import List, Dict, Any, Tuple, Generator\n",
|
| 174 |
+
"from peft import LoraConfig, get_peft_model\n",
|
| 175 |
+
"from PIL import Image\n",
|
| 176 |
+
"from roboflow import Roboflow"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "markdown",
|
| 181 |
+
"metadata": {
|
| 182 |
+
"id": "flp13B-8Myjf"
|
| 183 |
+
},
|
| 184 |
+
"source": [
|
| 185 |
+
"Load the model using `AutoModelForCausalLM` and the processor using `AutoProcessor` classes from the transformers library. Note that you need to pass `trust_remote_code` as `True` since this model is not a standard transformers model."
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"cell_type": "code",
|
| 190 |
+
"execution_count": null,
|
| 191 |
+
"metadata": {
|
| 192 |
+
"id": "zqDWEWDcaSxN"
|
| 193 |
+
},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
+
"CHECKPOINT = \"microsoft/Florence-2-large-ft\"\n",
|
| 197 |
+
"# REVISION = 'refs/pr/6'\n",
|
| 198 |
+
"DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"model = AutoModelForCausalLM.from_pretrained(CHECKPOINT, trust_remote_code=True).to(DEVICE)\n",
|
| 201 |
+
"processor = AutoProcessor.from_pretrained(CHECKPOINT, trust_remote_code=True)"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "markdown",
|
| 206 |
+
"metadata": {
|
| 207 |
+
"id": "rf1GlvvQFec-"
|
| 208 |
+
},
|
| 209 |
+
"source": [
|
| 210 |
+
"## Run inference with pre-trained Florence-2 model"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
+
"metadata": {
|
| 217 |
+
"colab": {
|
| 218 |
+
"base_uri": "https://localhost:8080/",
|
| 219 |
+
"height": 485
|
| 220 |
+
},
|
| 221 |
+
"id": "ReAKWNxAFmv1",
|
| 222 |
+
"outputId": "5df8fd92-c2b2-4549-a45b-6d83dd8c3835"
|
| 223 |
+
},
|
| 224 |
+
"outputs": [],
|
| 225 |
+
"source": [
|
| 226 |
+
"# @title Example object detection inference\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"image = Image.open(EXAMPLE_IMAGE_PATH)\n",
|
| 229 |
+
"task = \"<OD>\"\n",
|
| 230 |
+
"text = \"<OD>\"\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"inputs = processor(text=text, images=image, return_tensors=\"pt\").to(DEVICE)\n",
|
| 233 |
+
"generated_ids = model.generate(\n",
|
| 234 |
+
" input_ids=inputs[\"input_ids\"],\n",
|
| 235 |
+
" pixel_values=inputs[\"pixel_values\"],\n",
|
| 236 |
+
" max_new_tokens=256,\n",
|
| 237 |
+
" num_beams=3\n",
|
| 238 |
+
")\n",
|
| 239 |
+
"generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
| 240 |
+
"response = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))\n",
|
| 241 |
+
"detections = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, response, resolution_wh=image.size)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)\n",
|
| 244 |
+
"label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"image = bounding_box_annotator.annotate(image, detections)\n",
|
| 247 |
+
"image = label_annotator.annotate(image, detections)\n",
|
| 248 |
+
"image.thumbnail((600, 600))\n",
|
| 249 |
+
"image"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {
|
| 255 |
+
"id": "eQetrQM7Jziy"
|
| 256 |
+
},
|
| 257 |
+
"source": [
|
| 258 |
+
"## Fine-tune Florence-2 on custom dataset"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "markdown",
|
| 263 |
+
"metadata": {
|
| 264 |
+
"id": "Sw7D6ZYzAs9a"
|
| 265 |
+
},
|
| 266 |
+
"source": [
|
| 267 |
+
"### Download dataset from Roboflow Universe"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {
|
| 274 |
+
"colab": {
|
| 275 |
+
"base_uri": "https://localhost:8080/"
|
| 276 |
+
},
|
| 277 |
+
"id": "K1IlyjYmBCxX",
|
| 278 |
+
"outputId": "a0aefa84-f828-49b0-b5e5-463edbb22ec9"
|
| 279 |
+
},
|
| 280 |
+
"outputs": [],
|
| 281 |
+
"source": [
|
| 282 |
+
"ROBOFLOW_API_KEY = userdata.get('ROBOFLOW_API_KEY')\n",
|
| 283 |
+
"rf = Roboflow(api_key=ROBOFLOW_API_KEY)\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"project = rf.workspace(\"roboflow-100\").project(\"bccd-ouzjz\")\n",
|
| 286 |
+
"version = project.version(2)\n",
|
| 287 |
+
"dataset = version.download(\"florence2-od\")"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": null,
|
| 293 |
+
"metadata": {
|
| 294 |
+
"colab": {
|
| 295 |
+
"base_uri": "https://localhost:8080/"
|
| 296 |
+
},
|
| 297 |
+
"id": "iiLclUnKTrLE",
|
| 298 |
+
"outputId": "e8655a6a-aedd-409c-9a80-c2aec8f438dc"
|
| 299 |
+
},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"!head -n 5 {dataset.location}/train/annotations.jsonl"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": null,
|
| 308 |
+
"metadata": {
|
| 309 |
+
"id": "dExvJNFkxymc"
|
| 310 |
+
},
|
| 311 |
+
"outputs": [],
|
| 312 |
+
"source": [
|
| 313 |
+
"# @title Define `DetectionsDataset` class\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"class JSONLDataset:\n",
|
| 316 |
+
" def __init__(self, jsonl_file_path: str, image_directory_path: str):\n",
|
| 317 |
+
" self.jsonl_file_path = jsonl_file_path\n",
|
| 318 |
+
" self.image_directory_path = image_directory_path\n",
|
| 319 |
+
" self.entries = self._load_entries()\n",
|
| 320 |
+
"\n",
|
| 321 |
+
" def _load_entries(self) -> List[Dict[str, Any]]:\n",
|
| 322 |
+
" entries = []\n",
|
| 323 |
+
" with open(self.jsonl_file_path, 'r') as file:\n",
|
| 324 |
+
" for line in file:\n",
|
| 325 |
+
" data = json.loads(line)\n",
|
| 326 |
+
" entries.append(data)\n",
|
| 327 |
+
" return entries\n",
|
| 328 |
+
"\n",
|
| 329 |
+
" def __len__(self) -> int:\n",
|
| 330 |
+
" return len(self.entries)\n",
|
| 331 |
+
"\n",
|
| 332 |
+
" def __getitem__(self, idx: int) -> Tuple[Image.Image, Dict[str, Any]]:\n",
|
| 333 |
+
" if idx < 0 or idx >= len(self.entries):\n",
|
| 334 |
+
" raise IndexError(\"Index out of range\")\n",
|
| 335 |
+
"\n",
|
| 336 |
+
" entry = self.entries[idx]\n",
|
| 337 |
+
" image_path = os.path.join(self.image_directory_path, entry['image'])\n",
|
| 338 |
+
" try:\n",
|
| 339 |
+
" image = Image.open(image_path)\n",
|
| 340 |
+
" return (image, entry)\n",
|
| 341 |
+
" except FileNotFoundError:\n",
|
| 342 |
+
" raise FileNotFoundError(f\"Image file {image_path} not found.\")\n",
|
| 343 |
+
"\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"class DetectionDataset(Dataset):\n",
|
| 346 |
+
" def __init__(self, jsonl_file_path: str, image_directory_path: str):\n",
|
| 347 |
+
" self.dataset = JSONLDataset(jsonl_file_path, image_directory_path)\n",
|
| 348 |
+
"\n",
|
| 349 |
+
" def __len__(self):\n",
|
| 350 |
+
" return len(self.dataset)\n",
|
| 351 |
+
"\n",
|
| 352 |
+
" def __getitem__(self, idx):\n",
|
| 353 |
+
" image, data = self.dataset[idx]\n",
|
| 354 |
+
" prefix = data['prefix']\n",
|
| 355 |
+
" suffix = data['suffix']\n",
|
| 356 |
+
" return prefix, suffix, image"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": null,
|
| 362 |
+
"metadata": {
|
| 363 |
+
"id": "ilMb0ivGdt9l"
|
| 364 |
+
},
|
| 365 |
+
"outputs": [],
|
| 366 |
+
"source": [
|
| 367 |
+
"# @title Initiate `DetectionsDataset` and `DataLoader` for train and validation subsets\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"BATCH_SIZE = 6\n",
|
| 370 |
+
"NUM_WORKERS = 0\n",
|
| 371 |
+
"\n",
|
| 372 |
+
"def collate_fn(batch):\n",
|
| 373 |
+
" questions, answers, images = zip(*batch)\n",
|
| 374 |
+
" inputs = processor(text=list(questions), images=list(images), return_tensors=\"pt\", padding=True).to(DEVICE)\n",
|
| 375 |
+
" return inputs, answers\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"train_dataset = DetectionDataset(\n",
|
| 378 |
+
" jsonl_file_path = f\"{dataset.location}/train/annotations.jsonl\",\n",
|
| 379 |
+
" image_directory_path = f\"{dataset.location}/train/\"\n",
|
| 380 |
+
")\n",
|
| 381 |
+
"val_dataset = DetectionDataset(\n",
|
| 382 |
+
" jsonl_file_path = f\"{dataset.location}/valid/annotations.jsonl\",\n",
|
| 383 |
+
" image_directory_path = f\"{dataset.location}/valid/\"\n",
|
| 384 |
+
")\n",
|
| 385 |
+
"\n",
|
| 386 |
+
"train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, num_workers=NUM_WORKERS, shuffle=True)\n",
|
| 387 |
+
"val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, num_workers=NUM_WORKERS)"
|
| 388 |
+
]
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"cell_type": "code",
|
| 392 |
+
"execution_count": null,
|
| 393 |
+
"metadata": {
|
| 394 |
+
"colab": {
|
| 395 |
+
"base_uri": "https://localhost:8080/"
|
| 396 |
+
},
|
| 397 |
+
"id": "FZYoV_EjOo5A",
|
| 398 |
+
"outputId": "7ab4f8a8-e9be-4ac0-b370-003fc32a6332"
|
| 399 |
+
},
|
| 400 |
+
"outputs": [],
|
| 401 |
+
"source": [
|
| 402 |
+
"def analyze_suffix_length(dataset, processor, num_samples=100):\n",
|
| 403 |
+
" max_suffix_length = 0\n",
|
| 404 |
+
" max_suffix_token_length = 0\n",
|
| 405 |
+
"\n",
|
| 406 |
+
" for i in range(min(num_samples, len(dataset))):\n",
|
| 407 |
+
" _, suffix, _ = dataset[i]\n",
|
| 408 |
+
"\n",
|
| 409 |
+
" # Get token length using the processor\n",
|
| 410 |
+
" tokens = processor.tokenizer(suffix, return_tensors=\"pt\").input_ids[0]\n",
|
| 411 |
+
" token_length = len(tokens)\n",
|
| 412 |
+
"\n",
|
| 413 |
+
" # Update max lengths\n",
|
| 414 |
+
" max_suffix_length = max(max_suffix_length, len(suffix))\n",
|
| 415 |
+
" max_suffix_token_length = max(max_suffix_token_length, token_length)\n",
|
| 416 |
+
"\n",
|
| 417 |
+
" print(f\"Max suffix length (characters): {max_suffix_length}\")\n",
|
| 418 |
+
" print(f\"Max suffix length (tokens): {max_suffix_token_length}\")\n",
|
| 419 |
+
" print(f\"Current max_new_tokens: 1024\")\n",
|
| 420 |
+
"\n",
|
| 421 |
+
" if max_suffix_token_length > 1024:\n",
|
| 422 |
+
" print(\"Warning: max_new_tokens may be too small for some suffixes\")\n",
|
| 423 |
+
" else:\n",
|
| 424 |
+
" print(\"Current max_new_tokens should be sufficient\")\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"# Use the function\n",
|
| 427 |
+
"analyze_suffix_length(train_dataset, processor)"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"cell_type": "code",
|
| 432 |
+
"execution_count": null,
|
| 433 |
+
"metadata": {
|
| 434 |
+
"colab": {
|
| 435 |
+
"base_uri": "https://localhost:8080/"
|
| 436 |
+
},
|
| 437 |
+
"id": "FmPJOXCzB-29",
|
| 438 |
+
"outputId": "cbee50a7-4e06-402c-f2d0-92e0c3a4eac8"
|
| 439 |
+
},
|
| 440 |
+
"outputs": [],
|
| 441 |
+
"source": [
|
| 442 |
+
"# @title Setup LoRA Florence-2 model\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"config = LoraConfig(\n",
|
| 445 |
+
" r=8,\n",
|
| 446 |
+
" lora_alpha=8,\n",
|
| 447 |
+
" target_modules=[\"q_proj\", \"o_proj\", \"k_proj\", \"v_proj\", \"linear\", \"Conv2d\", \"lm_head\", \"fc2\"],\n",
|
| 448 |
+
" task_type=\"CAUSAL_LM\",\n",
|
| 449 |
+
" lora_dropout=0.05,\n",
|
| 450 |
+
" bias=\"none\",\n",
|
| 451 |
+
" inference_mode=False,\n",
|
| 452 |
+
" use_rslora=True,\n",
|
| 453 |
+
" init_lora_weights=\"gaussian\",\n",
|
| 454 |
+
")\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"peft_model = get_peft_model(model, config)\n",
|
| 457 |
+
"peft_model.print_trainable_parameters()"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"cell_type": "code",
|
| 462 |
+
"execution_count": null,
|
| 463 |
+
"metadata": {
|
| 464 |
+
"id": "1V9BcVQMycgq"
|
| 465 |
+
},
|
| 466 |
+
"outputs": [],
|
| 467 |
+
"source": [
|
| 468 |
+
"torch.cuda.empty_cache()"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "code",
|
| 473 |
+
"execution_count": null,
|
| 474 |
+
"metadata": {
|
| 475 |
+
"colab": {
|
| 476 |
+
"base_uri": "https://localhost:8080/",
|
| 477 |
+
"height": 1000
|
| 478 |
+
},
|
| 479 |
+
"id": "i9LEEXRwN9cX",
|
| 480 |
+
"outputId": "6b9e4cd9-7852-4826-ca4c-4f2c79aa470e"
|
| 481 |
+
},
|
| 482 |
+
"outputs": [],
|
| 483 |
+
"source": [
|
| 484 |
+
"# @title Run inference with pre-trained Florence-2 model on validation dataset\n",
|
| 485 |
+
"\n",
|
| 486 |
+
"def render_inline(image: Image.Image, resize=(128, 128)):\n",
|
| 487 |
+
" \"\"\"Convert image into inline html.\"\"\"\n",
|
| 488 |
+
" image.resize(resize)\n",
|
| 489 |
+
" with io.BytesIO() as buffer:\n",
|
| 490 |
+
" image.save(buffer, format='jpeg')\n",
|
| 491 |
+
" image_b64 = str(base64.b64encode(buffer.getvalue()), \"utf-8\")\n",
|
| 492 |
+
" return f\"data:image/jpeg;base64,{image_b64}\"\n",
|
| 493 |
+
"\n",
|
| 494 |
+
"\n",
|
| 495 |
+
"def render_example(image: Image.Image, response):\n",
|
| 496 |
+
" try:\n",
|
| 497 |
+
" detections = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, response, resolution_wh=image.size)\n",
|
| 498 |
+
" image = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX).annotate(image.copy(), detections)\n",
|
| 499 |
+
" image = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX).annotate(image, detections)\n",
|
| 500 |
+
" except:\n",
|
| 501 |
+
" print('failed to redner model response')\n",
|
| 502 |
+
" return f\"\"\"\n",
|
| 503 |
+
"<div style=\"display: inline-flex; align-items: center; justify-content: center;\">\n",
|
| 504 |
+
" <img style=\"width:256px; height:256px;\" src=\"{render_inline(image, resize=(128, 128))}\" />\n",
|
| 505 |
+
" <p style=\"width:512px; margin:10px; font-size:small;\">{html.escape(json.dumps(response))}</p>\n",
|
| 506 |
+
"</div>\n",
|
| 507 |
+
"\"\"\"\n",
|
| 508 |
+
"\n",
|
| 509 |
+
"\n",
|
| 510 |
+
"def render_inference_results(model, dataset: DetectionDataset, count: int):\n",
|
| 511 |
+
" html_out = \"\"\n",
|
| 512 |
+
" count = min(count, len(dataset))\n",
|
| 513 |
+
" for i in range(count):\n",
|
| 514 |
+
" image, data = dataset.dataset[i]\n",
|
| 515 |
+
" prefix = data['prefix']\n",
|
| 516 |
+
" suffix = data['suffix']\n",
|
| 517 |
+
" inputs = processor(text=prefix, images=image, return_tensors=\"pt\").to(DEVICE)\n",
|
| 518 |
+
" generated_ids = model.generate(\n",
|
| 519 |
+
" input_ids=inputs[\"input_ids\"],\n",
|
| 520 |
+
" pixel_values=inputs[\"pixel_values\"],\n",
|
| 521 |
+
" max_new_tokens=256,\n",
|
| 522 |
+
" num_beams=3\n",
|
| 523 |
+
" )\n",
|
| 524 |
+
" generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
| 525 |
+
" answer = processor.post_process_generation(generated_text, task='<OD>', image_size=image.size)\n",
|
| 526 |
+
" html_out += render_example(image, answer)\n",
|
| 527 |
+
"\n",
|
| 528 |
+
" display(HTML(html_out))\n",
|
| 529 |
+
"\n",
|
| 530 |
+
"render_inference_results(peft_model, val_dataset, 4)"
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"cell_type": "markdown",
|
| 535 |
+
"metadata": {
|
| 536 |
+
"id": "RH9JTq_RytE2"
|
| 537 |
+
},
|
| 538 |
+
"source": [
|
| 539 |
+
"## Fine-tune Florence-2 on custom object detection dataset"
|
| 540 |
+
]
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"cell_type": "code",
|
| 544 |
+
"execution_count": null,
|
| 545 |
+
"metadata": {
|
| 546 |
+
"id": "bC06Mc7jOdpY"
|
| 547 |
+
},
|
| 548 |
+
"outputs": [],
|
| 549 |
+
"source": [
|
| 550 |
+
"# @title Define train loop\n",
|
| 551 |
+
"\n",
|
| 552 |
+
"def train_model(train_loader, val_loader, model, processor, epochs=10, lr=1e-6):\n",
|
| 553 |
+
" optimizer = AdamW(model.parameters(), lr=lr)\n",
|
| 554 |
+
" num_training_steps = epochs * len(train_loader)\n",
|
| 555 |
+
" lr_scheduler = get_scheduler(\n",
|
| 556 |
+
" name=\"linear\",\n",
|
| 557 |
+
" optimizer=optimizer,\n",
|
| 558 |
+
" num_warmup_steps=0,\n",
|
| 559 |
+
" num_training_steps=num_training_steps,\n",
|
| 560 |
+
" )\n",
|
| 561 |
+
"\n",
|
| 562 |
+
" render_inference_results(peft_model, val_loader.dataset, 6)\n",
|
| 563 |
+
"\n",
|
| 564 |
+
" for epoch in range(epochs):\n",
|
| 565 |
+
" model.train()\n",
|
| 566 |
+
" train_loss = 0\n",
|
| 567 |
+
" for inputs, answers in tqdm(train_loader, desc=f\"Training Epoch {epoch + 1}/{epochs}\"):\n",
|
| 568 |
+
"\n",
|
| 569 |
+
" input_ids = inputs[\"input_ids\"]\n",
|
| 570 |
+
" pixel_values = inputs[\"pixel_values\"]\n",
|
| 571 |
+
" labels = processor.tokenizer(\n",
|
| 572 |
+
" text=answers,\n",
|
| 573 |
+
" return_tensors=\"pt\",\n",
|
| 574 |
+
" padding=True,\n",
|
| 575 |
+
" return_token_type_ids=False\n",
|
| 576 |
+
" ).input_ids.to(DEVICE)\n",
|
| 577 |
+
"\n",
|
| 578 |
+
" outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
|
| 579 |
+
" loss = outputs.loss\n",
|
| 580 |
+
"\n",
|
| 581 |
+
" loss.backward(), optimizer.step(), lr_scheduler.step(), optimizer.zero_grad()\n",
|
| 582 |
+
" train_loss += loss.item()\n",
|
| 583 |
+
"\n",
|
| 584 |
+
" avg_train_loss = train_loss / len(train_loader)\n",
|
| 585 |
+
" print(f\"Average Training Loss: {avg_train_loss}\")\n",
|
| 586 |
+
"\n",
|
| 587 |
+
" model.eval()\n",
|
| 588 |
+
" val_loss = 0\n",
|
| 589 |
+
" with torch.no_grad():\n",
|
| 590 |
+
" for inputs, answers in tqdm(val_loader, desc=f\"Validation Epoch {epoch + 1}/{epochs}\"):\n",
|
| 591 |
+
"\n",
|
| 592 |
+
" input_ids = inputs[\"input_ids\"]\n",
|
| 593 |
+
" pixel_values = inputs[\"pixel_values\"]\n",
|
| 594 |
+
" labels = processor.tokenizer(\n",
|
| 595 |
+
" text=answers,\n",
|
| 596 |
+
" return_tensors=\"pt\",\n",
|
| 597 |
+
" padding=True,\n",
|
| 598 |
+
" return_token_type_ids=False\n",
|
| 599 |
+
" ).input_ids.to(DEVICE)\n",
|
| 600 |
+
"\n",
|
| 601 |
+
" outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)\n",
|
| 602 |
+
" loss = outputs.loss\n",
|
| 603 |
+
"\n",
|
| 604 |
+
" val_loss += loss.item()\n",
|
| 605 |
+
"\n",
|
| 606 |
+
" avg_val_loss = val_loss / len(val_loader)\n",
|
| 607 |
+
" print(f\"Average Validation Loss: {avg_val_loss}\")\n",
|
| 608 |
+
"\n",
|
| 609 |
+
" render_inference_results(peft_model, val_loader.dataset, 6)\n",
|
| 610 |
+
"\n",
|
| 611 |
+
" output_dir = f\"./model_checkpoints/epoch_{epoch+1}\"\n",
|
| 612 |
+
" os.makedirs(output_dir, exist_ok=True)\n",
|
| 613 |
+
" model.save_pretrained(output_dir)\n",
|
| 614 |
+
" processor.save_pretrained(output_dir)"
|
| 615 |
+
]
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"cell_type": "code",
|
| 619 |
+
"execution_count": null,
|
| 620 |
+
"metadata": {
|
| 621 |
+
"colab": {
|
| 622 |
+
"base_uri": "https://localhost:8080/",
|
| 623 |
+
"height": 1000
|
| 624 |
+
},
|
| 625 |
+
"id": "LZybGHd3fNJ1",
|
| 626 |
+
"outputId": "c1c7be61-c4c5-4994-f3ac-a040f9f22c31"
|
| 627 |
+
},
|
| 628 |
+
"outputs": [],
|
| 629 |
+
"source": [
|
| 630 |
+
"# @title Run train loop\n",
|
| 631 |
+
"\n",
|
| 632 |
+
"%%time\n",
|
| 633 |
+
"\n",
|
| 634 |
+
"EPOCHS = 40\n",
|
| 635 |
+
"LR = 5e-6\n",
|
| 636 |
+
"\n",
|
| 637 |
+
"train_model(train_loader, val_loader, peft_model, processor, epochs=EPOCHS, lr=LR)"
|
| 638 |
+
]
|
| 639 |
+
},
|
| 640 |
+
{
|
| 641 |
+
"cell_type": "markdown",
|
| 642 |
+
"metadata": {
|
| 643 |
+
"id": "MBHMu7WGWpeu"
|
| 644 |
+
},
|
| 645 |
+
"source": [
|
| 646 |
+
"## Fine-tuned model evaluation"
|
| 647 |
+
]
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"cell_type": "code",
|
| 651 |
+
"execution_count": null,
|
| 652 |
+
"metadata": {
|
| 653 |
+
"id": "8f1BYeQw3xhl"
|
| 654 |
+
},
|
| 655 |
+
"outputs": [],
|
| 656 |
+
"source": [
|
| 657 |
+
"# @title Collect predictions\n",
|
| 658 |
+
"\n",
|
| 659 |
+
"# Corrected pattern to capture class names correctly\n",
|
| 660 |
+
"PATTERN = r'(RBC|WBC|Platelets)'\n",
|
| 661 |
+
"\n",
|
| 662 |
+
"def extract_classes(dataset: DetectionDataset):\n",
|
| 663 |
+
" class_set = set()\n",
|
| 664 |
+
" for i in range(len(dataset.dataset)):\n",
|
| 665 |
+
" image, data = dataset.dataset[i]\n",
|
| 666 |
+
" suffix = data[\"suffix\"]\n",
|
| 667 |
+
" classes = re.findall(PATTERN, suffix)\n",
|
| 668 |
+
" class_set.update(classes)\n",
|
| 669 |
+
" return sorted(class_set)\n",
|
| 670 |
+
"\n",
|
| 671 |
+
"CLASSES = extract_classes(train_dataset)\n",
|
| 672 |
+
"\n",
|
| 673 |
+
"targets = []\n",
|
| 674 |
+
"predictions = []\n",
|
| 675 |
+
"\n",
|
| 676 |
+
"for i in range(len(val_dataset.dataset)):\n",
|
| 677 |
+
" image, data = val_dataset.dataset[i]\n",
|
| 678 |
+
" prefix = data['prefix']\n",
|
| 679 |
+
" suffix = data['suffix']\n",
|
| 680 |
+
"\n",
|
| 681 |
+
" inputs = processor(text=prefix, images=image, return_tensors=\"pt\").to(DEVICE)\n",
|
| 682 |
+
" generated_ids = model.generate(\n",
|
| 683 |
+
" input_ids=inputs[\"input_ids\"],\n",
|
| 684 |
+
" pixel_values=inputs[\"pixel_values\"],\n",
|
| 685 |
+
" max_new_tokens=256,\n",
|
| 686 |
+
" num_beams=3\n",
|
| 687 |
+
" )\n",
|
| 688 |
+
" generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
| 689 |
+
"\n",
|
| 690 |
+
" prediction = processor.post_process_generation(generated_text, task='<OD>', image_size=image.size)\n",
|
| 691 |
+
" prediction = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, prediction, resolution_wh=image.size)\n",
|
| 692 |
+
" prediction = prediction[np.isin(prediction['class_name'], CLASSES)]\n",
|
| 693 |
+
" prediction.class_id = np.array([CLASSES.index(class_name) for class_name in prediction['class_name']])\n",
|
| 694 |
+
" prediction.confidence = np.ones(len(prediction))\n",
|
| 695 |
+
"\n",
|
| 696 |
+
" target = processor.post_process_generation(suffix, task='<OD>', image_size=image.size)\n",
|
| 697 |
+
" target = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, target, resolution_wh=image.size)\n",
|
| 698 |
+
" target.class_id = np.array([CLASSES.index(class_name) for class_name in target['class_name']])\n",
|
| 699 |
+
"\n",
|
| 700 |
+
" targets.append(target)\n",
|
| 701 |
+
" predictions.append(prediction)"
|
| 702 |
+
]
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"cell_type": "code",
|
| 706 |
+
"execution_count": null,
|
| 707 |
+
"metadata": {
|
| 708 |
+
"colab": {
|
| 709 |
+
"base_uri": "https://localhost:8080/"
|
| 710 |
+
},
|
| 711 |
+
"id": "nKECYHh-z95f",
|
| 712 |
+
"outputId": "690ab21b-f5d3-4608-f291-bcf1c941990c"
|
| 713 |
+
},
|
| 714 |
+
"outputs": [],
|
| 715 |
+
"source": [
|
| 716 |
+
"CLASSES"
|
| 717 |
+
]
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"cell_type": "code",
|
| 721 |
+
"execution_count": null,
|
| 722 |
+
"metadata": {
|
| 723 |
+
"colab": {
|
| 724 |
+
"base_uri": "https://localhost:8080/"
|
| 725 |
+
},
|
| 726 |
+
"id": "88VnIZ_feHPo",
|
| 727 |
+
"outputId": "9fc48273-24ae-4b3a-a71b-57fdfee2f0c6"
|
| 728 |
+
},
|
| 729 |
+
"outputs": [],
|
| 730 |
+
"source": [
|
| 731 |
+
"# @title Calculate mAP\n",
|
| 732 |
+
"mean_average_precision = sv.MeanAveragePrecision.from_detections(\n",
|
| 733 |
+
" predictions=predictions,\n",
|
| 734 |
+
" targets=targets,\n",
|
| 735 |
+
")\n",
|
| 736 |
+
"\n",
|
| 737 |
+
"print(f\"map50_95: {mean_average_precision.map50_95:.2f}\")\n",
|
| 738 |
+
"print(f\"map50: {mean_average_precision.map50:.2f}\")\n",
|
| 739 |
+
"print(f\"map75: {mean_average_precision.map75:.2f}\")"
|
| 740 |
+
]
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"cell_type": "code",
|
| 744 |
+
"execution_count": null,
|
| 745 |
+
"metadata": {
|
| 746 |
+
"colab": {
|
| 747 |
+
"base_uri": "https://localhost:8080/",
|
| 748 |
+
"height": 1000
|
| 749 |
+
},
|
| 750 |
+
"id": "85APzNRfe8xp",
|
| 751 |
+
"outputId": "260eb915-49e3-49b1-e215-d7cc6b504526"
|
| 752 |
+
},
|
| 753 |
+
"outputs": [],
|
| 754 |
+
"source": [
|
| 755 |
+
"import numpy as np\n",
|
| 756 |
+
"import supervision as sv # Ensure this is the correct library\n",
|
| 757 |
+
"import json\n",
|
| 758 |
+
"\n",
|
| 759 |
+
"# @title Calculate Confusion Matrix\n",
|
| 760 |
+
"confusion_matrix = sv.ConfusionMatrix.from_detections(\n",
|
| 761 |
+
" predictions=predictions,\n",
|
| 762 |
+
" targets=targets,\n",
|
| 763 |
+
" classes=CLASSES\n",
|
| 764 |
+
")\n",
|
| 765 |
+
"\n",
|
| 766 |
+
"_ = confusion_matrix.plot()"
|
| 767 |
+
]
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"cell_type": "code",
|
| 771 |
+
"execution_count": null,
|
| 772 |
+
"metadata": {
|
| 773 |
+
"colab": {
|
| 774 |
+
"base_uri": "https://localhost:8080/"
|
| 775 |
+
},
|
| 776 |
+
"id": "nfTi6NmpmiuU",
|
| 777 |
+
"outputId": "8af15af7-da64-40d1-c577-944a7d1b8be6"
|
| 778 |
+
},
|
| 779 |
+
"outputs": [],
|
| 780 |
+
"source": [
|
| 781 |
+
"# Correctly access the matrix attribute\n",
|
| 782 |
+
"conf_matrix_values = confusion_matrix.matrix\n",
|
| 783 |
+
"\n",
|
| 784 |
+
"# Print to check the values are extracted correctly\n",
|
| 785 |
+
"print(\"Confusion Matrix Values:\", conf_matrix_values)"
|
| 786 |
+
]
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"cell_type": "code",
|
| 790 |
+
"execution_count": null,
|
| 791 |
+
"metadata": {
|
| 792 |
+
"colab": {
|
| 793 |
+
"base_uri": "https://localhost:8080/",
|
| 794 |
+
"height": 217
|
| 795 |
+
},
|
| 796 |
+
"id": "w4jbxLsmlO7j",
|
| 797 |
+
"outputId": "1c022a10-ca1b-4f82-e74d-4ae72fa6ce17"
|
| 798 |
+
},
|
| 799 |
+
"outputs": [],
|
| 800 |
+
"source": [
|
| 801 |
+
"import json\n",
|
| 802 |
+
"from sklearn.metrics import confusion_matrix\n",
|
| 803 |
+
"\n",
|
| 804 |
+
"# Assuming y_true and y_pred are your ground truth and predicted labels\n",
|
| 805 |
+
"conf_matrix = confusion_matrix(y_true, y_pred, labels=range(len(CLASSES)))\n",
|
| 806 |
+
"\n",
|
| 807 |
+
"# Convert confusion matrix to JSON format\n",
|
| 808 |
+
"def confusion_matrix_to_json(conf_matrix, classes):\n",
|
| 809 |
+
" conf_matrix_dict = {\n",
|
| 810 |
+
" \"classes\": classes,\n",
|
| 811 |
+
" \"matrix\": conf_matrix.tolist()\n",
|
| 812 |
+
" }\n",
|
| 813 |
+
" return json.dumps(conf_matrix_dict, indent=4)\n",
|
| 814 |
+
"\n",
|
| 815 |
+
"json_output = confusion_matrix_to_json(conf_matrix, CLASSES)\n",
|
| 816 |
+
"print(json_output)\n"
|
| 817 |
+
]
|
| 818 |
+
},
|
| 819 |
+
{
|
| 820 |
+
"cell_type": "markdown",
|
| 821 |
+
"metadata": {
|
| 822 |
+
"id": "8rR2naNXzEB0"
|
| 823 |
+
},
|
| 824 |
+
"source": [
|
| 825 |
+
"## Save fine-tuned model on hard drive"
|
| 826 |
+
]
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"cell_type": "code",
|
| 830 |
+
"execution_count": null,
|
| 831 |
+
"metadata": {
|
| 832 |
+
"colab": {
|
| 833 |
+
"base_uri": "https://localhost:8080/"
|
| 834 |
+
},
|
| 835 |
+
"id": "Rdbmcv3TcIe8",
|
| 836 |
+
"outputId": "218d993c-414e-4682-86ab-c58db826ad0b"
|
| 837 |
+
},
|
| 838 |
+
"outputs": [],
|
| 839 |
+
"source": [
|
| 840 |
+
"peft_model.save_pretrained(\"/content/florence2-large-ft\")\n",
|
| 841 |
+
"processor.save_pretrained(\"/content/florence2-large-ft/\")\n",
|
| 842 |
+
"!ls -la /content/florence2-large/"
|
| 843 |
+
]
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"cell_type": "code",
|
| 847 |
+
"execution_count": null,
|
| 848 |
+
"metadata": {
|
| 849 |
+
"colab": {
|
| 850 |
+
"base_uri": "https://localhost:8080/",
|
| 851 |
+
"height": 117,
|
| 852 |
+
"referenced_widgets": [
|
| 853 |
+
"a9289c461dbe4cecb9e691766eecbe37",
|
| 854 |
+
"bf1811c46899427d920af49b20bb8ee2",
|
| 855 |
+
"0e385484fed6499eaf9a563a41623acc",
|
| 856 |
+
"95d542586c2c4726b3ec10ea4eb06011",
|
| 857 |
+
"e8a9f64dc4ad458e83580fc708514e7a",
|
| 858 |
+
"079e0c3428ec4572bcfe845d345f7318",
|
| 859 |
+
"ece7b911ecda44a7ac3bad2f5229b8be",
|
| 860 |
+
"1c18c58c22f94d12b0f61c034ee8dd7a",
|
| 861 |
+
"9118b17e1e9a4949af081f13717a34db",
|
| 862 |
+
"e154937e4db249ca93eeb86652858455",
|
| 863 |
+
"8bfeb74ca14f4f2d8cbf36081f73b7a3",
|
| 864 |
+
"2bdadfa556454c219aa6ebb1ddcf3485",
|
| 865 |
+
"9710de1c4e54496fbc501a9056fd9af1",
|
| 866 |
+
"83742b470564441c93a8a5a88a41d7d7",
|
| 867 |
+
"5c2272cd6d2d417f9f0c6fee95ae3d83",
|
| 868 |
+
"ba460d52106641a8a0168e1610933fe4",
|
| 869 |
+
"f4d85a0a6d9043c1afe1cdab71b0bf75",
|
| 870 |
+
"e5d93b4839f7415fbbb6263f51b0e5e1",
|
| 871 |
+
"62c3411212544a2aadbf4af460bce439",
|
| 872 |
+
"37eff0dac8144865bfc319b1954b2968",
|
| 873 |
+
"e89e8d9b8c364a34a4f2e7981ffeed85",
|
| 874 |
+
"c9a571522381476c9ff997ac776992c3"
|
| 875 |
+
]
|
| 876 |
+
},
|
| 877 |
+
"id": "fyP9ZW2bf1te",
|
| 878 |
+
"outputId": "80405e7f-6b36-4366-a00c-5d65e4d9e96a"
|
| 879 |
+
},
|
| 880 |
+
"outputs": [],
|
| 881 |
+
"source": [
|
| 882 |
+
"# Push the model to the Hub with your desired name\n",
|
| 883 |
+
"peft_model.push_to_hub(\"dwb2023/florence2-large-bccd-base-ft\")\n",
|
| 884 |
+
"processor.push_to_hub(\"dwb2023/florence2-large-bccd-base-ft\")"
|
| 885 |
+
]
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"cell_type": "code",
|
| 889 |
+
"execution_count": null,
|
| 890 |
+
"metadata": {
|
| 891 |
+
"id": "M_DdE_NOfJLG"
|
| 892 |
+
},
|
| 893 |
+
"outputs": [],
|
| 894 |
+
"source": []
|
| 895 |
+
}
|
| 896 |
+
],
|
| 897 |
+
"metadata": {
|
| 898 |
+
"accelerator": "GPU",
|
| 899 |
+
"colab": {
|
| 900 |
+
"gpuType": "A100",
|
| 901 |
+
"machine_shape": "hm",
|
| 902 |
+
"provenance": []
|
| 903 |
+
},
|
| 904 |
+
"kernelspec": {
|
| 905 |
+
"display_name": "Python 3",
|
| 906 |
+
"name": "python3"
|
| 907 |
+
},
|
| 908 |
+
"language_info": {
|
| 909 |
+
"name": "python"
|
| 910 |
+
},
|
| 911 |
+
"widgets": {
|
| 912 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 913 |
+
"079e0c3428ec4572bcfe845d345f7318": {
|
| 914 |
+
"model_module": "@jupyter-widgets/base",
|
| 915 |
+
"model_module_version": "1.2.0",
|
| 916 |
+
"model_name": "LayoutModel",
|
| 917 |
+
"state": {
|
| 918 |
+
"_model_module": "@jupyter-widgets/base",
|
| 919 |
+
"_model_module_version": "1.2.0",
|
| 920 |
+
"_model_name": "LayoutModel",
|
| 921 |
+
"_view_count": null,
|
| 922 |
+
"_view_module": "@jupyter-widgets/base",
|
| 923 |
+
"_view_module_version": "1.2.0",
|
| 924 |
+
"_view_name": "LayoutView",
|
| 925 |
+
"align_content": null,
|
| 926 |
+
"align_items": null,
|
| 927 |
+
"align_self": null,
|
| 928 |
+
"border": null,
|
| 929 |
+
"bottom": null,
|
| 930 |
+
"display": null,
|
| 931 |
+
"flex": null,
|
| 932 |
+
"flex_flow": null,
|
| 933 |
+
"grid_area": null,
|
| 934 |
+
"grid_auto_columns": null,
|
| 935 |
+
"grid_auto_flow": null,
|
| 936 |
+
"grid_auto_rows": null,
|
| 937 |
+
"grid_column": null,
|
| 938 |
+
"grid_gap": null,
|
| 939 |
+
"grid_row": null,
|
| 940 |
+
"grid_template_areas": null,
|
| 941 |
+
"grid_template_columns": null,
|
| 942 |
+
"grid_template_rows": null,
|
| 943 |
+
"height": null,
|
| 944 |
+
"justify_content": null,
|
| 945 |
+
"justify_items": null,
|
| 946 |
+
"left": null,
|
| 947 |
+
"margin": null,
|
| 948 |
+
"max_height": null,
|
| 949 |
+
"max_width": null,
|
| 950 |
+
"min_height": null,
|
| 951 |
+
"min_width": null,
|
| 952 |
+
"object_fit": null,
|
| 953 |
+
"object_position": null,
|
| 954 |
+
"order": null,
|
| 955 |
+
"overflow": null,
|
| 956 |
+
"overflow_x": null,
|
| 957 |
+
"overflow_y": null,
|
| 958 |
+
"padding": null,
|
| 959 |
+
"right": null,
|
| 960 |
+
"top": null,
|
| 961 |
+
"visibility": null,
|
| 962 |
+
"width": null
|
| 963 |
+
}
|
| 964 |
+
},
|
| 965 |
+
"0e385484fed6499eaf9a563a41623acc": {
|
| 966 |
+
"model_module": "@jupyter-widgets/controls",
|
| 967 |
+
"model_module_version": "1.5.0",
|
| 968 |
+
"model_name": "FloatProgressModel",
|
| 969 |
+
"state": {
|
| 970 |
+
"_dom_classes": [],
|
| 971 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 972 |
+
"_model_module_version": "1.5.0",
|
| 973 |
+
"_model_name": "FloatProgressModel",
|
| 974 |
+
"_view_count": null,
|
| 975 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 976 |
+
"_view_module_version": "1.5.0",
|
| 977 |
+
"_view_name": "ProgressView",
|
| 978 |
+
"bar_style": "success",
|
| 979 |
+
"description": "",
|
| 980 |
+
"description_tooltip": null,
|
| 981 |
+
"layout": "IPY_MODEL_1c18c58c22f94d12b0f61c034ee8dd7a",
|
| 982 |
+
"max": 5174,
|
| 983 |
+
"min": 0,
|
| 984 |
+
"orientation": "horizontal",
|
| 985 |
+
"style": "IPY_MODEL_9118b17e1e9a4949af081f13717a34db",
|
| 986 |
+
"value": 5174
|
| 987 |
+
}
|
| 988 |
+
},
|
| 989 |
+
"1c18c58c22f94d12b0f61c034ee8dd7a": {
|
| 990 |
+
"model_module": "@jupyter-widgets/base",
|
| 991 |
+
"model_module_version": "1.2.0",
|
| 992 |
+
"model_name": "LayoutModel",
|
| 993 |
+
"state": {
|
| 994 |
+
"_model_module": "@jupyter-widgets/base",
|
| 995 |
+
"_model_module_version": "1.2.0",
|
| 996 |
+
"_model_name": "LayoutModel",
|
| 997 |
+
"_view_count": null,
|
| 998 |
+
"_view_module": "@jupyter-widgets/base",
|
| 999 |
+
"_view_module_version": "1.2.0",
|
| 1000 |
+
"_view_name": "LayoutView",
|
| 1001 |
+
"align_content": null,
|
| 1002 |
+
"align_items": null,
|
| 1003 |
+
"align_self": null,
|
| 1004 |
+
"border": null,
|
| 1005 |
+
"bottom": null,
|
| 1006 |
+
"display": null,
|
| 1007 |
+
"flex": null,
|
| 1008 |
+
"flex_flow": null,
|
| 1009 |
+
"grid_area": null,
|
| 1010 |
+
"grid_auto_columns": null,
|
| 1011 |
+
"grid_auto_flow": null,
|
| 1012 |
+
"grid_auto_rows": null,
|
| 1013 |
+
"grid_column": null,
|
| 1014 |
+
"grid_gap": null,
|
| 1015 |
+
"grid_row": null,
|
| 1016 |
+
"grid_template_areas": null,
|
| 1017 |
+
"grid_template_columns": null,
|
| 1018 |
+
"grid_template_rows": null,
|
| 1019 |
+
"height": null,
|
| 1020 |
+
"justify_content": null,
|
| 1021 |
+
"justify_items": null,
|
| 1022 |
+
"left": null,
|
| 1023 |
+
"margin": null,
|
| 1024 |
+
"max_height": null,
|
| 1025 |
+
"max_width": null,
|
| 1026 |
+
"min_height": null,
|
| 1027 |
+
"min_width": null,
|
| 1028 |
+
"object_fit": null,
|
| 1029 |
+
"object_position": null,
|
| 1030 |
+
"order": null,
|
| 1031 |
+
"overflow": null,
|
| 1032 |
+
"overflow_x": null,
|
| 1033 |
+
"overflow_y": null,
|
| 1034 |
+
"padding": null,
|
| 1035 |
+
"right": null,
|
| 1036 |
+
"top": null,
|
| 1037 |
+
"visibility": null,
|
| 1038 |
+
"width": null
|
| 1039 |
+
}
|
| 1040 |
+
},
|
| 1041 |
+
"2bdadfa556454c219aa6ebb1ddcf3485": {
|
| 1042 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1043 |
+
"model_module_version": "1.5.0",
|
| 1044 |
+
"model_name": "HBoxModel",
|
| 1045 |
+
"state": {
|
| 1046 |
+
"_dom_classes": [],
|
| 1047 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1048 |
+
"_model_module_version": "1.5.0",
|
| 1049 |
+
"_model_name": "HBoxModel",
|
| 1050 |
+
"_view_count": null,
|
| 1051 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1052 |
+
"_view_module_version": "1.5.0",
|
| 1053 |
+
"_view_name": "HBoxView",
|
| 1054 |
+
"box_style": "",
|
| 1055 |
+
"children": [
|
| 1056 |
+
"IPY_MODEL_9710de1c4e54496fbc501a9056fd9af1",
|
| 1057 |
+
"IPY_MODEL_83742b470564441c93a8a5a88a41d7d7",
|
| 1058 |
+
"IPY_MODEL_5c2272cd6d2d417f9f0c6fee95ae3d83"
|
| 1059 |
+
],
|
| 1060 |
+
"layout": "IPY_MODEL_ba460d52106641a8a0168e1610933fe4"
|
| 1061 |
+
}
|
| 1062 |
+
},
|
| 1063 |
+
"37eff0dac8144865bfc319b1954b2968": {
|
| 1064 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1065 |
+
"model_module_version": "1.5.0",
|
| 1066 |
+
"model_name": "ProgressStyleModel",
|
| 1067 |
+
"state": {
|
| 1068 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1069 |
+
"_model_module_version": "1.5.0",
|
| 1070 |
+
"_model_name": "ProgressStyleModel",
|
| 1071 |
+
"_view_count": null,
|
| 1072 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1073 |
+
"_view_module_version": "1.2.0",
|
| 1074 |
+
"_view_name": "StyleView",
|
| 1075 |
+
"bar_color": null,
|
| 1076 |
+
"description_width": ""
|
| 1077 |
+
}
|
| 1078 |
+
},
|
| 1079 |
+
"5c2272cd6d2d417f9f0c6fee95ae3d83": {
|
| 1080 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1081 |
+
"model_module_version": "1.5.0",
|
| 1082 |
+
"model_name": "HTMLModel",
|
| 1083 |
+
"state": {
|
| 1084 |
+
"_dom_classes": [],
|
| 1085 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1086 |
+
"_model_module_version": "1.5.0",
|
| 1087 |
+
"_model_name": "HTMLModel",
|
| 1088 |
+
"_view_count": null,
|
| 1089 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1090 |
+
"_view_module_version": "1.5.0",
|
| 1091 |
+
"_view_name": "HTMLView",
|
| 1092 |
+
"description": "",
|
| 1093 |
+
"description_tooltip": null,
|
| 1094 |
+
"layout": "IPY_MODEL_e89e8d9b8c364a34a4f2e7981ffeed85",
|
| 1095 |
+
"placeholder": "",
|
| 1096 |
+
"style": "IPY_MODEL_c9a571522381476c9ff997ac776992c3",
|
| 1097 |
+
"value": " 16.6M/16.6M [00:01<00:00, 18.1MB/s]"
|
| 1098 |
+
}
|
| 1099 |
+
},
|
| 1100 |
+
"62c3411212544a2aadbf4af460bce439": {
|
| 1101 |
+
"model_module": "@jupyter-widgets/base",
|
| 1102 |
+
"model_module_version": "1.2.0",
|
| 1103 |
+
"model_name": "LayoutModel",
|
| 1104 |
+
"state": {
|
| 1105 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1106 |
+
"_model_module_version": "1.2.0",
|
| 1107 |
+
"_model_name": "LayoutModel",
|
| 1108 |
+
"_view_count": null,
|
| 1109 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1110 |
+
"_view_module_version": "1.2.0",
|
| 1111 |
+
"_view_name": "LayoutView",
|
| 1112 |
+
"align_content": null,
|
| 1113 |
+
"align_items": null,
|
| 1114 |
+
"align_self": null,
|
| 1115 |
+
"border": null,
|
| 1116 |
+
"bottom": null,
|
| 1117 |
+
"display": null,
|
| 1118 |
+
"flex": null,
|
| 1119 |
+
"flex_flow": null,
|
| 1120 |
+
"grid_area": null,
|
| 1121 |
+
"grid_auto_columns": null,
|
| 1122 |
+
"grid_auto_flow": null,
|
| 1123 |
+
"grid_auto_rows": null,
|
| 1124 |
+
"grid_column": null,
|
| 1125 |
+
"grid_gap": null,
|
| 1126 |
+
"grid_row": null,
|
| 1127 |
+
"grid_template_areas": null,
|
| 1128 |
+
"grid_template_columns": null,
|
| 1129 |
+
"grid_template_rows": null,
|
| 1130 |
+
"height": null,
|
| 1131 |
+
"justify_content": null,
|
| 1132 |
+
"justify_items": null,
|
| 1133 |
+
"left": null,
|
| 1134 |
+
"margin": null,
|
| 1135 |
+
"max_height": null,
|
| 1136 |
+
"max_width": null,
|
| 1137 |
+
"min_height": null,
|
| 1138 |
+
"min_width": null,
|
| 1139 |
+
"object_fit": null,
|
| 1140 |
+
"object_position": null,
|
| 1141 |
+
"order": null,
|
| 1142 |
+
"overflow": null,
|
| 1143 |
+
"overflow_x": null,
|
| 1144 |
+
"overflow_y": null,
|
| 1145 |
+
"padding": null,
|
| 1146 |
+
"right": null,
|
| 1147 |
+
"top": null,
|
| 1148 |
+
"visibility": null,
|
| 1149 |
+
"width": null
|
| 1150 |
+
}
|
| 1151 |
+
},
|
| 1152 |
+
"83742b470564441c93a8a5a88a41d7d7": {
|
| 1153 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1154 |
+
"model_module_version": "1.5.0",
|
| 1155 |
+
"model_name": "FloatProgressModel",
|
| 1156 |
+
"state": {
|
| 1157 |
+
"_dom_classes": [],
|
| 1158 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1159 |
+
"_model_module_version": "1.5.0",
|
| 1160 |
+
"_model_name": "FloatProgressModel",
|
| 1161 |
+
"_view_count": null,
|
| 1162 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1163 |
+
"_view_module_version": "1.5.0",
|
| 1164 |
+
"_view_name": "ProgressView",
|
| 1165 |
+
"bar_style": "success",
|
| 1166 |
+
"description": "",
|
| 1167 |
+
"description_tooltip": null,
|
| 1168 |
+
"layout": "IPY_MODEL_62c3411212544a2aadbf4af460bce439",
|
| 1169 |
+
"max": 16582384,
|
| 1170 |
+
"min": 0,
|
| 1171 |
+
"orientation": "horizontal",
|
| 1172 |
+
"style": "IPY_MODEL_37eff0dac8144865bfc319b1954b2968",
|
| 1173 |
+
"value": 16582384
|
| 1174 |
+
}
|
| 1175 |
+
},
|
| 1176 |
+
"8bfeb74ca14f4f2d8cbf36081f73b7a3": {
|
| 1177 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1178 |
+
"model_module_version": "1.5.0",
|
| 1179 |
+
"model_name": "DescriptionStyleModel",
|
| 1180 |
+
"state": {
|
| 1181 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1182 |
+
"_model_module_version": "1.5.0",
|
| 1183 |
+
"_model_name": "DescriptionStyleModel",
|
| 1184 |
+
"_view_count": null,
|
| 1185 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1186 |
+
"_view_module_version": "1.2.0",
|
| 1187 |
+
"_view_name": "StyleView",
|
| 1188 |
+
"description_width": ""
|
| 1189 |
+
}
|
| 1190 |
+
},
|
| 1191 |
+
"9118b17e1e9a4949af081f13717a34db": {
|
| 1192 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1193 |
+
"model_module_version": "1.5.0",
|
| 1194 |
+
"model_name": "ProgressStyleModel",
|
| 1195 |
+
"state": {
|
| 1196 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1197 |
+
"_model_module_version": "1.5.0",
|
| 1198 |
+
"_model_name": "ProgressStyleModel",
|
| 1199 |
+
"_view_count": null,
|
| 1200 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1201 |
+
"_view_module_version": "1.2.0",
|
| 1202 |
+
"_view_name": "StyleView",
|
| 1203 |
+
"bar_color": null,
|
| 1204 |
+
"description_width": ""
|
| 1205 |
+
}
|
| 1206 |
+
},
|
| 1207 |
+
"95d542586c2c4726b3ec10ea4eb06011": {
|
| 1208 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1209 |
+
"model_module_version": "1.5.0",
|
| 1210 |
+
"model_name": "HTMLModel",
|
| 1211 |
+
"state": {
|
| 1212 |
+
"_dom_classes": [],
|
| 1213 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1214 |
+
"_model_module_version": "1.5.0",
|
| 1215 |
+
"_model_name": "HTMLModel",
|
| 1216 |
+
"_view_count": null,
|
| 1217 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1218 |
+
"_view_module_version": "1.5.0",
|
| 1219 |
+
"_view_name": "HTMLView",
|
| 1220 |
+
"description": "",
|
| 1221 |
+
"description_tooltip": null,
|
| 1222 |
+
"layout": "IPY_MODEL_e154937e4db249ca93eeb86652858455",
|
| 1223 |
+
"placeholder": "",
|
| 1224 |
+
"style": "IPY_MODEL_8bfeb74ca14f4f2d8cbf36081f73b7a3",
|
| 1225 |
+
"value": " 5.17k/5.17k [00:00<00:00, 424kB/s]"
|
| 1226 |
+
}
|
| 1227 |
+
},
|
| 1228 |
+
"9710de1c4e54496fbc501a9056fd9af1": {
|
| 1229 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1230 |
+
"model_module_version": "1.5.0",
|
| 1231 |
+
"model_name": "HTMLModel",
|
| 1232 |
+
"state": {
|
| 1233 |
+
"_dom_classes": [],
|
| 1234 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1235 |
+
"_model_module_version": "1.5.0",
|
| 1236 |
+
"_model_name": "HTMLModel",
|
| 1237 |
+
"_view_count": null,
|
| 1238 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1239 |
+
"_view_module_version": "1.5.0",
|
| 1240 |
+
"_view_name": "HTMLView",
|
| 1241 |
+
"description": "",
|
| 1242 |
+
"description_tooltip": null,
|
| 1243 |
+
"layout": "IPY_MODEL_f4d85a0a6d9043c1afe1cdab71b0bf75",
|
| 1244 |
+
"placeholder": "",
|
| 1245 |
+
"style": "IPY_MODEL_e5d93b4839f7415fbbb6263f51b0e5e1",
|
| 1246 |
+
"value": "adapter_model.safetensors: 100%"
|
| 1247 |
+
}
|
| 1248 |
+
},
|
| 1249 |
+
"a9289c461dbe4cecb9e691766eecbe37": {
|
| 1250 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1251 |
+
"model_module_version": "1.5.0",
|
| 1252 |
+
"model_name": "HBoxModel",
|
| 1253 |
+
"state": {
|
| 1254 |
+
"_dom_classes": [],
|
| 1255 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1256 |
+
"_model_module_version": "1.5.0",
|
| 1257 |
+
"_model_name": "HBoxModel",
|
| 1258 |
+
"_view_count": null,
|
| 1259 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1260 |
+
"_view_module_version": "1.5.0",
|
| 1261 |
+
"_view_name": "HBoxView",
|
| 1262 |
+
"box_style": "",
|
| 1263 |
+
"children": [
|
| 1264 |
+
"IPY_MODEL_bf1811c46899427d920af49b20bb8ee2",
|
| 1265 |
+
"IPY_MODEL_0e385484fed6499eaf9a563a41623acc",
|
| 1266 |
+
"IPY_MODEL_95d542586c2c4726b3ec10ea4eb06011"
|
| 1267 |
+
],
|
| 1268 |
+
"layout": "IPY_MODEL_e8a9f64dc4ad458e83580fc708514e7a"
|
| 1269 |
+
}
|
| 1270 |
+
},
|
| 1271 |
+
"ba460d52106641a8a0168e1610933fe4": {
|
| 1272 |
+
"model_module": "@jupyter-widgets/base",
|
| 1273 |
+
"model_module_version": "1.2.0",
|
| 1274 |
+
"model_name": "LayoutModel",
|
| 1275 |
+
"state": {
|
| 1276 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1277 |
+
"_model_module_version": "1.2.0",
|
| 1278 |
+
"_model_name": "LayoutModel",
|
| 1279 |
+
"_view_count": null,
|
| 1280 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1281 |
+
"_view_module_version": "1.2.0",
|
| 1282 |
+
"_view_name": "LayoutView",
|
| 1283 |
+
"align_content": null,
|
| 1284 |
+
"align_items": null,
|
| 1285 |
+
"align_self": null,
|
| 1286 |
+
"border": null,
|
| 1287 |
+
"bottom": null,
|
| 1288 |
+
"display": null,
|
| 1289 |
+
"flex": null,
|
| 1290 |
+
"flex_flow": null,
|
| 1291 |
+
"grid_area": null,
|
| 1292 |
+
"grid_auto_columns": null,
|
| 1293 |
+
"grid_auto_flow": null,
|
| 1294 |
+
"grid_auto_rows": null,
|
| 1295 |
+
"grid_column": null,
|
| 1296 |
+
"grid_gap": null,
|
| 1297 |
+
"grid_row": null,
|
| 1298 |
+
"grid_template_areas": null,
|
| 1299 |
+
"grid_template_columns": null,
|
| 1300 |
+
"grid_template_rows": null,
|
| 1301 |
+
"height": null,
|
| 1302 |
+
"justify_content": null,
|
| 1303 |
+
"justify_items": null,
|
| 1304 |
+
"left": null,
|
| 1305 |
+
"margin": null,
|
| 1306 |
+
"max_height": null,
|
| 1307 |
+
"max_width": null,
|
| 1308 |
+
"min_height": null,
|
| 1309 |
+
"min_width": null,
|
| 1310 |
+
"object_fit": null,
|
| 1311 |
+
"object_position": null,
|
| 1312 |
+
"order": null,
|
| 1313 |
+
"overflow": null,
|
| 1314 |
+
"overflow_x": null,
|
| 1315 |
+
"overflow_y": null,
|
| 1316 |
+
"padding": null,
|
| 1317 |
+
"right": null,
|
| 1318 |
+
"top": null,
|
| 1319 |
+
"visibility": null,
|
| 1320 |
+
"width": null
|
| 1321 |
+
}
|
| 1322 |
+
},
|
| 1323 |
+
"bf1811c46899427d920af49b20bb8ee2": {
|
| 1324 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1325 |
+
"model_module_version": "1.5.0",
|
| 1326 |
+
"model_name": "HTMLModel",
|
| 1327 |
+
"state": {
|
| 1328 |
+
"_dom_classes": [],
|
| 1329 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1330 |
+
"_model_module_version": "1.5.0",
|
| 1331 |
+
"_model_name": "HTMLModel",
|
| 1332 |
+
"_view_count": null,
|
| 1333 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1334 |
+
"_view_module_version": "1.5.0",
|
| 1335 |
+
"_view_name": "HTMLView",
|
| 1336 |
+
"description": "",
|
| 1337 |
+
"description_tooltip": null,
|
| 1338 |
+
"layout": "IPY_MODEL_079e0c3428ec4572bcfe845d345f7318",
|
| 1339 |
+
"placeholder": "",
|
| 1340 |
+
"style": "IPY_MODEL_ece7b911ecda44a7ac3bad2f5229b8be",
|
| 1341 |
+
"value": "README.md: 100%"
|
| 1342 |
+
}
|
| 1343 |
+
},
|
| 1344 |
+
"c9a571522381476c9ff997ac776992c3": {
|
| 1345 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1346 |
+
"model_module_version": "1.5.0",
|
| 1347 |
+
"model_name": "DescriptionStyleModel",
|
| 1348 |
+
"state": {
|
| 1349 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1350 |
+
"_model_module_version": "1.5.0",
|
| 1351 |
+
"_model_name": "DescriptionStyleModel",
|
| 1352 |
+
"_view_count": null,
|
| 1353 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1354 |
+
"_view_module_version": "1.2.0",
|
| 1355 |
+
"_view_name": "StyleView",
|
| 1356 |
+
"description_width": ""
|
| 1357 |
+
}
|
| 1358 |
+
},
|
| 1359 |
+
"e154937e4db249ca93eeb86652858455": {
|
| 1360 |
+
"model_module": "@jupyter-widgets/base",
|
| 1361 |
+
"model_module_version": "1.2.0",
|
| 1362 |
+
"model_name": "LayoutModel",
|
| 1363 |
+
"state": {
|
| 1364 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1365 |
+
"_model_module_version": "1.2.0",
|
| 1366 |
+
"_model_name": "LayoutModel",
|
| 1367 |
+
"_view_count": null,
|
| 1368 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1369 |
+
"_view_module_version": "1.2.0",
|
| 1370 |
+
"_view_name": "LayoutView",
|
| 1371 |
+
"align_content": null,
|
| 1372 |
+
"align_items": null,
|
| 1373 |
+
"align_self": null,
|
| 1374 |
+
"border": null,
|
| 1375 |
+
"bottom": null,
|
| 1376 |
+
"display": null,
|
| 1377 |
+
"flex": null,
|
| 1378 |
+
"flex_flow": null,
|
| 1379 |
+
"grid_area": null,
|
| 1380 |
+
"grid_auto_columns": null,
|
| 1381 |
+
"grid_auto_flow": null,
|
| 1382 |
+
"grid_auto_rows": null,
|
| 1383 |
+
"grid_column": null,
|
| 1384 |
+
"grid_gap": null,
|
| 1385 |
+
"grid_row": null,
|
| 1386 |
+
"grid_template_areas": null,
|
| 1387 |
+
"grid_template_columns": null,
|
| 1388 |
+
"grid_template_rows": null,
|
| 1389 |
+
"height": null,
|
| 1390 |
+
"justify_content": null,
|
| 1391 |
+
"justify_items": null,
|
| 1392 |
+
"left": null,
|
| 1393 |
+
"margin": null,
|
| 1394 |
+
"max_height": null,
|
| 1395 |
+
"max_width": null,
|
| 1396 |
+
"min_height": null,
|
| 1397 |
+
"min_width": null,
|
| 1398 |
+
"object_fit": null,
|
| 1399 |
+
"object_position": null,
|
| 1400 |
+
"order": null,
|
| 1401 |
+
"overflow": null,
|
| 1402 |
+
"overflow_x": null,
|
| 1403 |
+
"overflow_y": null,
|
| 1404 |
+
"padding": null,
|
| 1405 |
+
"right": null,
|
| 1406 |
+
"top": null,
|
| 1407 |
+
"visibility": null,
|
| 1408 |
+
"width": null
|
| 1409 |
+
}
|
| 1410 |
+
},
|
| 1411 |
+
"e5d93b4839f7415fbbb6263f51b0e5e1": {
|
| 1412 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1413 |
+
"model_module_version": "1.5.0",
|
| 1414 |
+
"model_name": "DescriptionStyleModel",
|
| 1415 |
+
"state": {
|
| 1416 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1417 |
+
"_model_module_version": "1.5.0",
|
| 1418 |
+
"_model_name": "DescriptionStyleModel",
|
| 1419 |
+
"_view_count": null,
|
| 1420 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1421 |
+
"_view_module_version": "1.2.0",
|
| 1422 |
+
"_view_name": "StyleView",
|
| 1423 |
+
"description_width": ""
|
| 1424 |
+
}
|
| 1425 |
+
},
|
| 1426 |
+
"e89e8d9b8c364a34a4f2e7981ffeed85": {
|
| 1427 |
+
"model_module": "@jupyter-widgets/base",
|
| 1428 |
+
"model_module_version": "1.2.0",
|
| 1429 |
+
"model_name": "LayoutModel",
|
| 1430 |
+
"state": {
|
| 1431 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1432 |
+
"_model_module_version": "1.2.0",
|
| 1433 |
+
"_model_name": "LayoutModel",
|
| 1434 |
+
"_view_count": null,
|
| 1435 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1436 |
+
"_view_module_version": "1.2.0",
|
| 1437 |
+
"_view_name": "LayoutView",
|
| 1438 |
+
"align_content": null,
|
| 1439 |
+
"align_items": null,
|
| 1440 |
+
"align_self": null,
|
| 1441 |
+
"border": null,
|
| 1442 |
+
"bottom": null,
|
| 1443 |
+
"display": null,
|
| 1444 |
+
"flex": null,
|
| 1445 |
+
"flex_flow": null,
|
| 1446 |
+
"grid_area": null,
|
| 1447 |
+
"grid_auto_columns": null,
|
| 1448 |
+
"grid_auto_flow": null,
|
| 1449 |
+
"grid_auto_rows": null,
|
| 1450 |
+
"grid_column": null,
|
| 1451 |
+
"grid_gap": null,
|
| 1452 |
+
"grid_row": null,
|
| 1453 |
+
"grid_template_areas": null,
|
| 1454 |
+
"grid_template_columns": null,
|
| 1455 |
+
"grid_template_rows": null,
|
| 1456 |
+
"height": null,
|
| 1457 |
+
"justify_content": null,
|
| 1458 |
+
"justify_items": null,
|
| 1459 |
+
"left": null,
|
| 1460 |
+
"margin": null,
|
| 1461 |
+
"max_height": null,
|
| 1462 |
+
"max_width": null,
|
| 1463 |
+
"min_height": null,
|
| 1464 |
+
"min_width": null,
|
| 1465 |
+
"object_fit": null,
|
| 1466 |
+
"object_position": null,
|
| 1467 |
+
"order": null,
|
| 1468 |
+
"overflow": null,
|
| 1469 |
+
"overflow_x": null,
|
| 1470 |
+
"overflow_y": null,
|
| 1471 |
+
"padding": null,
|
| 1472 |
+
"right": null,
|
| 1473 |
+
"top": null,
|
| 1474 |
+
"visibility": null,
|
| 1475 |
+
"width": null
|
| 1476 |
+
}
|
| 1477 |
+
},
|
| 1478 |
+
"e8a9f64dc4ad458e83580fc708514e7a": {
|
| 1479 |
+
"model_module": "@jupyter-widgets/base",
|
| 1480 |
+
"model_module_version": "1.2.0",
|
| 1481 |
+
"model_name": "LayoutModel",
|
| 1482 |
+
"state": {
|
| 1483 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1484 |
+
"_model_module_version": "1.2.0",
|
| 1485 |
+
"_model_name": "LayoutModel",
|
| 1486 |
+
"_view_count": null,
|
| 1487 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1488 |
+
"_view_module_version": "1.2.0",
|
| 1489 |
+
"_view_name": "LayoutView",
|
| 1490 |
+
"align_content": null,
|
| 1491 |
+
"align_items": null,
|
| 1492 |
+
"align_self": null,
|
| 1493 |
+
"border": null,
|
| 1494 |
+
"bottom": null,
|
| 1495 |
+
"display": null,
|
| 1496 |
+
"flex": null,
|
| 1497 |
+
"flex_flow": null,
|
| 1498 |
+
"grid_area": null,
|
| 1499 |
+
"grid_auto_columns": null,
|
| 1500 |
+
"grid_auto_flow": null,
|
| 1501 |
+
"grid_auto_rows": null,
|
| 1502 |
+
"grid_column": null,
|
| 1503 |
+
"grid_gap": null,
|
| 1504 |
+
"grid_row": null,
|
| 1505 |
+
"grid_template_areas": null,
|
| 1506 |
+
"grid_template_columns": null,
|
| 1507 |
+
"grid_template_rows": null,
|
| 1508 |
+
"height": null,
|
| 1509 |
+
"justify_content": null,
|
| 1510 |
+
"justify_items": null,
|
| 1511 |
+
"left": null,
|
| 1512 |
+
"margin": null,
|
| 1513 |
+
"max_height": null,
|
| 1514 |
+
"max_width": null,
|
| 1515 |
+
"min_height": null,
|
| 1516 |
+
"min_width": null,
|
| 1517 |
+
"object_fit": null,
|
| 1518 |
+
"object_position": null,
|
| 1519 |
+
"order": null,
|
| 1520 |
+
"overflow": null,
|
| 1521 |
+
"overflow_x": null,
|
| 1522 |
+
"overflow_y": null,
|
| 1523 |
+
"padding": null,
|
| 1524 |
+
"right": null,
|
| 1525 |
+
"top": null,
|
| 1526 |
+
"visibility": null,
|
| 1527 |
+
"width": null
|
| 1528 |
+
}
|
| 1529 |
+
},
|
| 1530 |
+
"ece7b911ecda44a7ac3bad2f5229b8be": {
|
| 1531 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1532 |
+
"model_module_version": "1.5.0",
|
| 1533 |
+
"model_name": "DescriptionStyleModel",
|
| 1534 |
+
"state": {
|
| 1535 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1536 |
+
"_model_module_version": "1.5.0",
|
| 1537 |
+
"_model_name": "DescriptionStyleModel",
|
| 1538 |
+
"_view_count": null,
|
| 1539 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1540 |
+
"_view_module_version": "1.2.0",
|
| 1541 |
+
"_view_name": "StyleView",
|
| 1542 |
+
"description_width": ""
|
| 1543 |
+
}
|
| 1544 |
+
},
|
| 1545 |
+
"f4d85a0a6d9043c1afe1cdab71b0bf75": {
|
| 1546 |
+
"model_module": "@jupyter-widgets/base",
|
| 1547 |
+
"model_module_version": "1.2.0",
|
| 1548 |
+
"model_name": "LayoutModel",
|
| 1549 |
+
"state": {
|
| 1550 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1551 |
+
"_model_module_version": "1.2.0",
|
| 1552 |
+
"_model_name": "LayoutModel",
|
| 1553 |
+
"_view_count": null,
|
| 1554 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1555 |
+
"_view_module_version": "1.2.0",
|
| 1556 |
+
"_view_name": "LayoutView",
|
| 1557 |
+
"align_content": null,
|
| 1558 |
+
"align_items": null,
|
| 1559 |
+
"align_self": null,
|
| 1560 |
+
"border": null,
|
| 1561 |
+
"bottom": null,
|
| 1562 |
+
"display": null,
|
| 1563 |
+
"flex": null,
|
| 1564 |
+
"flex_flow": null,
|
| 1565 |
+
"grid_area": null,
|
| 1566 |
+
"grid_auto_columns": null,
|
| 1567 |
+
"grid_auto_flow": null,
|
| 1568 |
+
"grid_auto_rows": null,
|
| 1569 |
+
"grid_column": null,
|
| 1570 |
+
"grid_gap": null,
|
| 1571 |
+
"grid_row": null,
|
| 1572 |
+
"grid_template_areas": null,
|
| 1573 |
+
"grid_template_columns": null,
|
| 1574 |
+
"grid_template_rows": null,
|
| 1575 |
+
"height": null,
|
| 1576 |
+
"justify_content": null,
|
| 1577 |
+
"justify_items": null,
|
| 1578 |
+
"left": null,
|
| 1579 |
+
"margin": null,
|
| 1580 |
+
"max_height": null,
|
| 1581 |
+
"max_width": null,
|
| 1582 |
+
"min_height": null,
|
| 1583 |
+
"min_width": null,
|
| 1584 |
+
"object_fit": null,
|
| 1585 |
+
"object_position": null,
|
| 1586 |
+
"order": null,
|
| 1587 |
+
"overflow": null,
|
| 1588 |
+
"overflow_x": null,
|
| 1589 |
+
"overflow_y": null,
|
| 1590 |
+
"padding": null,
|
| 1591 |
+
"right": null,
|
| 1592 |
+
"top": null,
|
| 1593 |
+
"visibility": null,
|
| 1594 |
+
"width": null
|
| 1595 |
+
}
|
| 1596 |
+
}
|
| 1597 |
+
}
|
| 1598 |
+
}
|
| 1599 |
+
},
|
| 1600 |
+
"nbformat": 4,
|
| 1601 |
+
"nbformat_minor": 0
|
| 1602 |
+
}
|