File size: 5,653 Bytes
541f217
56ac15e
 
 
541f217
 
 
56ac15e
541f217
56ac15e
 
 
 
 
 
 
 
 
 
28a3dde
56ac15e
 
28a3dde
56ac15e
 
 
 
 
 
28a3dde
56ac15e
 
 
28a3dde
56ac15e
 
 
541f217
56ac15e
541f217
 
56ac15e
 
 
541f217
 
 
 
 
 
 
56ac15e
541f217
 
56ac15e
 
 
541f217
56ac15e
 
 
541f217
56ac15e
 
 
 
 
 
541f217
56ac15e
541f217
 
 
 
56ac15e
541f217
56ac15e
541f217
56ac15e
 
 
 
541f217
 
 
 
 
 
 
 
 
 
 
 
 
56ac15e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541f217
 
 
 
 
 
56ac15e
 
 
 
28a3dde
56ac15e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28a3dde
56ac15e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

import os
import shutil
import cv2
import zipfile
import uuid

import numpy as np
import gradio as gr

from naming import im2c
from collections import Counter


COLOR_NAME = ['black', 'brown', 'blue', 'gray', 'green', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']


def get_top_names(img):
    # resize images to smaller size
    anchor = 256
    width = img.shape[1]
    height = img.shape[0]
    if width > 512 or height > 512:
        if width >= height:
            dim = (np.floor(width/height*anchor).astype(int), anchor)
        else:
            dim = (anchor, np.floor(height/width*anchor).astype(int))
        img = cv2.resize(img, dim, interpolation=cv2.INTER_LINEAR)

    # obtain color names of all the pixels
    w2c = np.load('w2c11_j.npy').astype(np.float16)
    _, _, name_idx_img, _ = im2c(img, w2c)

    # compute the order of each name based on the numbers of each name
    filtered_counts = Counter(name_idx_img[name_idx_img <= 10])
    sorted_counts = sorted(filtered_counts.items(), key=lambda x: x[1], reverse=True)
    top_3_values = [num for num, count in sorted_counts[:3]]
    top_3_counts = [count/(dim[0]*dim[1])  for num, count in sorted_counts[:3]]
    top_3_colors = [COLOR_NAME[i] for i in top_3_values]
    # print("Top 3 colors:", top_3_counts)
    return top_3_values, top_3_counts, top_3_colors


def classify_and_log(images):
    # output_folder = "classified_results"
    # os.makedirs(output_folder, exist_ok=True)

     # create a temporary directory
    session_id = str(uuid.uuid4())
    output_dir = f"temp_{session_id}"
    os.makedirs(output_dir, exist_ok=True)


    category_folders = {i: os.path.join(output_dir, COLOR_NAME[i]) for i in range(11)}
    for folder in category_folders.values():
        os.makedirs(folder, exist_ok=True)

    log_file = os.path.join(output_dir, "top3colors.txt")
    
    results = {i: [] for i in range(11)}


    with open(log_file, "w") as log:
        for id_img, img in enumerate(images):
            filename = os.path.basename(img.name)
            img_array = cv2.imread(img).astype(np.float32)
            img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)

            cat_id, cat_counts, category = get_top_names(img_array)

            for i in range(3):
                if cat_counts[i] > 0.15:
                    target_path = os.path.join(category_folders[cat_id[i]], filename)
                    cv2.imwrite(target_path, cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB))

            # print(f"Image:{filename} -> Top 3 colors:{category}\n")

            log.write(f"{filename} -> 1 {category[0]} {100*cat_counts[0]:.2f}%, 2 {category[1]} {100*cat_counts[1]:.2f}%, 3 {category[2]} {100*cat_counts[2]:.2f}%\n")

            results[cat_id[0]].append(target_path)


    # compile all images into a zip file
    zip_path = f"{output_dir}.zip"
    with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(output_dir):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, start=output_dir)
                zipf.write(file_path, arcname)

    # optional: clean up the output directory
    shutil.rmtree(output_dir)

    return zip_path


def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def upload_example_to_gallery(images, prompt, style, negative_prompt):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)



with gr.Blocks() as demo:
    gr.Markdown("## Image color categorization")
    gr.Markdown("We categorize images into different classes based on the frequency of different colors appearing in each image.")
    gr.Markdown("The 11 color catergories include: black, brown, blue, gray, green, orange, pink, purple, red, white and yellow.")
    gr.Markdown("The classification is based on the color naming model from paper _Van De Weijer, Joost, et al. Learning color names for real-world applications. IEEE Transactions on Image Processing 18.7 (2009): 1512-1523._")
    gr.Markdown("The output results are in a zip file with all the images in the correspoding folders.")
    gr.Markdown("Note that one image can be classified into multiple categories (top 3 categories and frequency > 15%), and the top 3 categories are listed in the log file.")


    with gr.Row():
        with gr.Column():
            image_input = gr.File(
                        label="Drag/Select more than one images",
                        file_types=["image"],
                        file_count="multiple"
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)


            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=image_input, size="sm")


        image_input.upload(fn=swap_to_gallery, inputs=image_input, outputs=[uploaded_files, clear_button, image_input])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, image_input])

    classify_btn = gr.Button("submit")

    # with gr.Row():
    #     image_output = {str(i): gr.Gallery(label=f"{i}") for i in range(11)}
    
    log_output = gr.File(label="download results")

    classify_btn.click(
        classify_and_log, 
        inputs=[image_input],
        outputs=[log_output]
    )


demo.launch()