Spaces:
Runtime error
Runtime error
| import shlex | |
| import subprocess | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| subprocess.run( | |
| shlex.split( | |
| "pip install https://huggingface.co/spaces/dylanebert/LGM-mini/resolve/main/wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl" | |
| ) | |
| ) | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "dylanebert/LGM-full", | |
| custom_pipeline="dylanebert/LGM-full", | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True, | |
| ).to("cuda") | |
| def run(image): | |
| input_image = np.array(image, dtype=np.float32) / 255.0 | |
| splat = pipeline( | |
| "", input_image, guidance_scale=5, num_inference_steps=30, elevation=0 | |
| ) | |
| splat_file = "/tmp/output.ply" | |
| pipeline.save_ply(splat, splat_file) | |
| return splat_file | |
| demo = gr.Interface( | |
| fn=run, | |
| title="LGM Tiny", | |
| description="An extremely simplified version of [LGM](https://huggingface.co/ashawkey/LGM). Intended as resource for the [ML for 3D Course](https://huggingface.co/learn/ml-for-3d-course/unit0/introduction).", | |
| inputs="image", | |
| outputs=gr.Model3D(), | |
| examples=[ | |
| "https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg" | |
| ], | |
| cache_examples=True, | |
| allow_duplication=True, | |
| ) | |
| demo.queue().launch() | |