Spaces:
Running
Running
| import streamlit as st | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| # Load pre-trained model and tokenizer | |
| model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| def analyze_sentiment(text): | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
| outputs = model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
| return probs.detach().numpy()[0] | |
| st.title("Sentiment Analysis with Transformer") | |
| prompt_text = "rt NLP trnsf xmpl w PyTrc Hggng Fc, nd Strml ntrfc fr npts tpts, ncld mtpl grph f ncsry. Cd z t ct pst." | |
| st.write(f"**Prompt:** {prompt_text}") | |
| user_input = st.text_area("Enter text for sentiment analysis:", "I love this product!") | |
| if st.button("Analyze Sentiment"): | |
| sentiment_scores = analyze_sentiment(user_input) | |
| st.write("Sentiment Scores:") | |
| st.write(f"Negative: {sentiment_scores[0]:.4f}") | |
| st.write(f"Positive: {sentiment_scores[1]:.4f}") | |
| # Create and display multiple graphs | |
| fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) | |
| # Bar plot | |
| ax1.bar(['Negative', 'Positive'], sentiment_scores) | |
| ax1.set_ylabel('Score') | |
| ax1.set_title('Sentiment Analysis Results (Bar Plot)') | |
| # Pie chart | |
| ax2.pie(sentiment_scores, labels=['Negative', 'Positive'], autopct='%1.1f%%') | |
| ax2.set_title('Sentiment Analysis Results (Pie Chart)') | |
| st.pyplot(fig) | |
| # Heatmap | |
| fig, ax = plt.subplots(figsize=(8, 2)) | |
| sns.heatmap([sentiment_scores], annot=True, cmap="coolwarm", cbar=False, ax=ax) | |
| ax.set_xticklabels(['Negative', 'Positive']) | |
| ax.set_yticklabels(['Sentiment']) | |
| ax.set_title('Sentiment Analysis Results (Heatmap)') | |
| st.pyplot(fig) | |
| st.write("Note: This example uses a pre-trained model for English sentiment analysis.") |