Spaces:
Running
Running
Create 25_Deployment.py
Browse files- pages/25_Deployment.py +67 -0
pages/25_Deployment.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
import torchvision.models as models
|
| 6 |
+
|
| 7 |
+
# Save the model (this should be run only once, so it is placed here for completeness)
|
| 8 |
+
def save_model():
|
| 9 |
+
model = models.resnet18(pretrained=True)
|
| 10 |
+
torch.save(model.state_dict(), 'resnet18.pth')
|
| 11 |
+
|
| 12 |
+
# Call save_model to save the model
|
| 13 |
+
save_model()
|
| 14 |
+
|
| 15 |
+
# Load the model
|
| 16 |
+
def load_model():
|
| 17 |
+
model = models.resnet18()
|
| 18 |
+
model.load_state_dict(torch.load('resnet18.pth'))
|
| 19 |
+
model.eval()
|
| 20 |
+
return model
|
| 21 |
+
|
| 22 |
+
def main():
|
| 23 |
+
st.title("Image Classification with ResNet18")
|
| 24 |
+
|
| 25 |
+
# Upload an image
|
| 26 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 27 |
+
if uploaded_file is not None:
|
| 28 |
+
image = Image.open(uploaded_file)
|
| 29 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
| 30 |
+
st.write("")
|
| 31 |
+
st.write("Classifying...")
|
| 32 |
+
|
| 33 |
+
# Load the model
|
| 34 |
+
model = load_model()
|
| 35 |
+
|
| 36 |
+
# Preprocess the image
|
| 37 |
+
preprocess = transforms.Compose([
|
| 38 |
+
transforms.Resize(256),
|
| 39 |
+
transforms.CenterCrop(224),
|
| 40 |
+
transforms.ToTensor(),
|
| 41 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 42 |
+
])
|
| 43 |
+
|
| 44 |
+
input_tensor = preprocess(image)
|
| 45 |
+
input_batch = input_tensor.unsqueeze(0)
|
| 46 |
+
|
| 47 |
+
# Ensure the input is on the same device as the model
|
| 48 |
+
if torch.cuda.is_available():
|
| 49 |
+
input_batch = input_batch.to('cuda')
|
| 50 |
+
model.to('cuda')
|
| 51 |
+
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
output = model(input_batch)
|
| 54 |
+
|
| 55 |
+
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
| 56 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
| 57 |
+
|
| 58 |
+
# Print top 5 categories
|
| 59 |
+
with open("imagenet_classes.txt") as f:
|
| 60 |
+
categories = [line.strip() for line in f.readlines()]
|
| 61 |
+
|
| 62 |
+
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
| 63 |
+
for i in range(top5_prob.size(0)):
|
| 64 |
+
st.write(categories[top5_catid[i]], top5_prob[i].item())
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
main()
|