Spaces:
Running
Running
Create 19_ResNet.py
Browse files- pages/19_ResNet.py +163 -0
pages/19_ResNet.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Install necessary packages
|
| 2 |
+
# Ensure you have PyTorch, torchvision, and Streamlit installed
|
| 3 |
+
# You can install them using pip if you haven't already:
|
| 4 |
+
# pip install torch torchvision streamlit
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
from torchvision import datasets, models, transforms
|
| 10 |
+
from torch.utils.data import DataLoader
|
| 11 |
+
import numpy as np
|
| 12 |
+
import time
|
| 13 |
+
import os
|
| 14 |
+
import copy
|
| 15 |
+
import streamlit as st
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import torchvision.transforms as T
|
| 19 |
+
|
| 20 |
+
# Data transformations
|
| 21 |
+
data_transforms = {
|
| 22 |
+
'train': transforms.Compose([
|
| 23 |
+
transforms.RandomResizedCrop(224),
|
| 24 |
+
transforms.RandomHorizontalFlip(),
|
| 25 |
+
transforms.ToTensor(),
|
| 26 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 27 |
+
]),
|
| 28 |
+
'val': transforms.Compose([
|
| 29 |
+
transforms.Resize(256),
|
| 30 |
+
transforms.CenterCrop(224),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 33 |
+
]),
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# Load datasets
|
| 37 |
+
data_dir = 'path/to/data'
|
| 38 |
+
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
|
| 39 |
+
for x in ['train', 'val']}
|
| 40 |
+
dataloaders = {x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
|
| 41 |
+
for x in ['train', 'val']}
|
| 42 |
+
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
|
| 43 |
+
class_names = image_datasets['train'].classes
|
| 44 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
|
| 46 |
+
# Load the pre-trained model
|
| 47 |
+
model_ft = models.resnet18(pretrained=True)
|
| 48 |
+
num_ftrs = model_ft.fc.in_features
|
| 49 |
+
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
|
| 50 |
+
model_ft = model_ft.to(device)
|
| 51 |
+
|
| 52 |
+
# Define loss function and optimizer
|
| 53 |
+
criterion = nn.CrossEntropyLoss()
|
| 54 |
+
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
|
| 55 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
|
| 56 |
+
|
| 57 |
+
# Training and evaluation functions
|
| 58 |
+
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
|
| 59 |
+
since = time.time()
|
| 60 |
+
|
| 61 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 62 |
+
best_acc = 0.0
|
| 63 |
+
|
| 64 |
+
for epoch in range(num_epochs):
|
| 65 |
+
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
|
| 66 |
+
print('-' * 10)
|
| 67 |
+
|
| 68 |
+
for phase in ['train', 'val']:
|
| 69 |
+
if phase == 'train':
|
| 70 |
+
model.train()
|
| 71 |
+
else:
|
| 72 |
+
model.eval()
|
| 73 |
+
|
| 74 |
+
running_loss = 0.0
|
| 75 |
+
running_corrects = 0
|
| 76 |
+
|
| 77 |
+
for inputs, labels in dataloaders[phase]:
|
| 78 |
+
inputs = inputs.to(device)
|
| 79 |
+
labels = labels.to(device)
|
| 80 |
+
|
| 81 |
+
optimizer.zero_grad()
|
| 82 |
+
|
| 83 |
+
with torch.set_grad_enabled(phase == 'train'):
|
| 84 |
+
outputs = model(inputs)
|
| 85 |
+
_, preds = torch.max(outputs, 1)
|
| 86 |
+
loss = criterion(outputs, labels)
|
| 87 |
+
|
| 88 |
+
if phase == 'train':
|
| 89 |
+
loss.backward()
|
| 90 |
+
optimizer.step()
|
| 91 |
+
|
| 92 |
+
running_loss += loss.item() * inputs.size(0)
|
| 93 |
+
running_corrects += torch.sum(preds == labels.data)
|
| 94 |
+
|
| 95 |
+
if phase == 'train':
|
| 96 |
+
scheduler.step()
|
| 97 |
+
|
| 98 |
+
epoch_loss = running_loss / dataset_sizes[phase]
|
| 99 |
+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
| 100 |
+
|
| 101 |
+
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
|
| 102 |
+
phase, epoch_loss, epoch_acc))
|
| 103 |
+
|
| 104 |
+
if phase == 'val' and epoch_acc > best_acc:
|
| 105 |
+
best_acc = epoch_acc
|
| 106 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
| 107 |
+
|
| 108 |
+
print()
|
| 109 |
+
|
| 110 |
+
time_elapsed = time.time() - since
|
| 111 |
+
print('Training complete in {:.0f}m {:.0f}s'.format(
|
| 112 |
+
time_elapsed // 60, time_elapsed % 60))
|
| 113 |
+
print('Best val Acc: {:4f}'.format(best_acc))
|
| 114 |
+
|
| 115 |
+
model.load_state_dict(best_model_wts)
|
| 116 |
+
return model
|
| 117 |
+
|
| 118 |
+
# Train the model
|
| 119 |
+
model_ft = train_model(model_ft, criterion, optimizer_ft, scheduler, num_epochs=25)
|
| 120 |
+
|
| 121 |
+
# Save the trained model
|
| 122 |
+
torch.save(model_ft.state_dict(), 'model_ft.pth')
|
| 123 |
+
|
| 124 |
+
# Streamlit Interface
|
| 125 |
+
st.title("Image Classification with Fine-tuned ResNet")
|
| 126 |
+
|
| 127 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 128 |
+
|
| 129 |
+
if uploaded_file is not None:
|
| 130 |
+
image = Image.open(uploaded_file)
|
| 131 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
| 132 |
+
st.write("")
|
| 133 |
+
st.write("Classifying...")
|
| 134 |
+
|
| 135 |
+
model_ft = models.resnet18(pretrained=True)
|
| 136 |
+
num_ftrs = model_ft.fc.in_features
|
| 137 |
+
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
|
| 138 |
+
model_ft.load_state_dict(torch.load('model_ft.pth'))
|
| 139 |
+
model_ft = model_ft.to(device)
|
| 140 |
+
model_ft.eval()
|
| 141 |
+
|
| 142 |
+
preprocess = T.Compose([
|
| 143 |
+
T.Resize(256),
|
| 144 |
+
T.CenterCrop(224),
|
| 145 |
+
T.ToTensor(),
|
| 146 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 147 |
+
])
|
| 148 |
+
|
| 149 |
+
img = preprocess(image).unsqueeze(0)
|
| 150 |
+
img = img.to(device)
|
| 151 |
+
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
outputs = model_ft(img)
|
| 154 |
+
_, preds = torch.max(outputs, 1)
|
| 155 |
+
predicted_class = class_names[preds[0]]
|
| 156 |
+
|
| 157 |
+
st.write(f"Predicted Class: {predicted_class}")
|
| 158 |
+
|
| 159 |
+
# Plotting the image with matplotlib
|
| 160 |
+
fig, ax = plt.subplots()
|
| 161 |
+
ax.imshow(image)
|
| 162 |
+
ax.set_title(f"Predicted: {predicted_class}")
|
| 163 |
+
st.pyplot(fig)
|