Spaces:
Running
Running
Create 15_CNN.py
Browse files- pages/15_CNN.py +110 -0
pages/15_CNN.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import torchvision
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Define the CNN model
|
| 12 |
+
class Net(nn.Module):
|
| 13 |
+
def __init__(self):
|
| 14 |
+
super(Net, self).__init__()
|
| 15 |
+
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
|
| 16 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 17 |
+
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
| 18 |
+
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
| 19 |
+
self.fc1 = nn.Linear(128 * 4 * 4, 256)
|
| 20 |
+
self.fc2 = nn.Linear(256, 128)
|
| 21 |
+
self.fc3 = nn.Linear(128, 10)
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
x = self.pool(F.relu(self.conv1(x)))
|
| 25 |
+
x = self.pool(F.relu(self.conv2(x)))
|
| 26 |
+
x = self.pool(F.relu(self.conv3(x)))
|
| 27 |
+
x = x.view(-1, 128 * 4 * 4)
|
| 28 |
+
x = F.relu(self.fc1(x))
|
| 29 |
+
x = F.relu(self.fc2(x))
|
| 30 |
+
x = self.fc3(x)
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
# Load pre-trained model (if available)
|
| 34 |
+
def load_model():
|
| 35 |
+
net = Net()
|
| 36 |
+
try:
|
| 37 |
+
net.load_state_dict(torch.load('cnn_model.pth'))
|
| 38 |
+
net.eval()
|
| 39 |
+
st.write("Model loaded successfully")
|
| 40 |
+
except FileNotFoundError:
|
| 41 |
+
st.write("No pre-trained model found. Please train the model first.")
|
| 42 |
+
return net
|
| 43 |
+
|
| 44 |
+
# Function to predict the class of an image
|
| 45 |
+
def predict(image, model):
|
| 46 |
+
transform = transforms.Compose([
|
| 47 |
+
transforms.Resize((32, 32)),
|
| 48 |
+
transforms.ToTensor(),
|
| 49 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 50 |
+
])
|
| 51 |
+
image = transform(image).unsqueeze(0)
|
| 52 |
+
outputs = model(image)
|
| 53 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 54 |
+
return predicted.item()
|
| 55 |
+
|
| 56 |
+
# Training function
|
| 57 |
+
def train_model():
|
| 58 |
+
transform = transforms.Compose([
|
| 59 |
+
transforms.ToTensor(),
|
| 60 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 61 |
+
])
|
| 62 |
+
|
| 63 |
+
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
| 64 |
+
trainloader = DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
|
| 65 |
+
|
| 66 |
+
net = Net()
|
| 67 |
+
criterion = nn.CrossEntropyLoss()
|
| 68 |
+
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
|
| 69 |
+
|
| 70 |
+
st.write("Training the model...")
|
| 71 |
+
for epoch in range(10):
|
| 72 |
+
running_loss = 0.0
|
| 73 |
+
for i, data in enumerate(trainloader, 0):
|
| 74 |
+
inputs, labels = data
|
| 75 |
+
optimizer.zero_grad()
|
| 76 |
+
outputs = net(inputs)
|
| 77 |
+
loss = criterion(outputs, labels)
|
| 78 |
+
loss.backward()
|
| 79 |
+
optimizer.step()
|
| 80 |
+
|
| 81 |
+
running_loss += loss.item()
|
| 82 |
+
if i % 100 == 99:
|
| 83 |
+
st.write(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
|
| 84 |
+
running_loss = 0.0
|
| 85 |
+
|
| 86 |
+
st.write('Finished Training')
|
| 87 |
+
torch.save(net.state_dict(), 'cnn_model.pth')
|
| 88 |
+
st.write('Model saved as cnn_model.pth')
|
| 89 |
+
return net
|
| 90 |
+
|
| 91 |
+
# Streamlit interface
|
| 92 |
+
st.title("CNN Image Classification with CIFAR-10")
|
| 93 |
+
|
| 94 |
+
mode = st.sidebar.selectbox("Mode", ["Train", "Predict"])
|
| 95 |
+
|
| 96 |
+
if mode == "Train":
|
| 97 |
+
if st.button("Train Model"):
|
| 98 |
+
model = train_model()
|
| 99 |
+
|
| 100 |
+
if mode == "Predict":
|
| 101 |
+
model = load_model()
|
| 102 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 103 |
+
if uploaded_file is not None:
|
| 104 |
+
image = Image.open(uploaded_file)
|
| 105 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
| 106 |
+
st.write("")
|
| 107 |
+
st.write("Classifying...")
|
| 108 |
+
class_idx = predict(image, model)
|
| 109 |
+
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
|
| 110 |
+
st.write(f'Prediction: {classes[class_idx]}')
|