Spaces:
Running
Running
Update pages/13_FFNN.py
Browse files- pages/13_FFNN.py +31 -4
pages/13_FFNN.py
CHANGED
|
@@ -5,6 +5,7 @@ import torch.optim as optim
|
|
| 5 |
import torchvision
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
import numpy as np
|
| 10 |
|
|
@@ -77,7 +78,14 @@ def test_network(net, testloader):
|
|
| 77 |
# Load the data
|
| 78 |
trainloader, testloader = load_data()
|
| 79 |
|
| 80 |
-
# Streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
st.sidebar.header('Model Hyperparameters')
|
| 82 |
hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
|
| 83 |
hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
|
|
@@ -86,6 +94,25 @@ learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
|
|
| 86 |
momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
|
| 87 |
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
# Create the network
|
| 90 |
net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
|
| 91 |
criterion = nn.CrossEntropyLoss()
|
|
@@ -116,7 +143,7 @@ if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
|
|
| 116 |
st.write(f'Test Accuracy: {accuracy:.2f}%')
|
| 117 |
|
| 118 |
# Display results in a table
|
| 119 |
-
st.write('
|
| 120 |
results = pd.DataFrame({
|
| 121 |
'Ground Truth': all_labels,
|
| 122 |
'Predicted': all_predicted
|
|
@@ -138,9 +165,9 @@ if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'
|
|
| 138 |
outputs = st.session_state['trained_model'](images)
|
| 139 |
_, predicted = torch.max(outputs, 1)
|
| 140 |
|
| 141 |
-
st.write('
|
| 142 |
results = pd.DataFrame({
|
| 143 |
'Ground Truth': labels.numpy(),
|
| 144 |
'Predicted': predicted.numpy()
|
| 145 |
})
|
| 146 |
-
st.table(results)
|
|
|
|
| 5 |
import torchvision
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
import seaborn as sns
|
| 9 |
import pandas as pd
|
| 10 |
import numpy as np
|
| 11 |
|
|
|
|
| 78 |
# Load the data
|
| 79 |
trainloader, testloader = load_data()
|
| 80 |
|
| 81 |
+
# Streamlit interface
|
| 82 |
+
st.title("Feedforward Neural Network for MNIST Classification")
|
| 83 |
+
|
| 84 |
+
st.write("""
|
| 85 |
+
This application demonstrates how to build and train a Feedforward Neural Network (FFNN) for image classification using the MNIST dataset. You can adjust hyperparameters, visualize sample images, and see the model's performance.
|
| 86 |
+
""")
|
| 87 |
+
|
| 88 |
+
# Sidebar for input parameters
|
| 89 |
st.sidebar.header('Model Hyperparameters')
|
| 90 |
hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
|
| 91 |
hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
|
|
|
|
| 94 |
momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
|
| 95 |
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
|
| 96 |
|
| 97 |
+
# Display some sample images
|
| 98 |
+
st.write("## Sample Images from MNIST Dataset")
|
| 99 |
+
sample_images, sample_labels = next(iter(trainloader))
|
| 100 |
+
fig, axes = plt.subplots(1, 6, figsize=(15, 5))
|
| 101 |
+
for i in range(6):
|
| 102 |
+
axes[i].imshow(sample_images[i].numpy().squeeze(), cmap='gray')
|
| 103 |
+
axes[i].set_title(f'Label: {sample_labels[i].item()}')
|
| 104 |
+
axes[i].axis('off')
|
| 105 |
+
st.pyplot(fig)
|
| 106 |
+
|
| 107 |
+
# Class distribution
|
| 108 |
+
st.write("## Class Distribution in MNIST Dataset")
|
| 109 |
+
class_counts = np.bincount(sample_labels.numpy())
|
| 110 |
+
fig, ax = plt.subplots()
|
| 111 |
+
sns.barplot(x=list(range(10)), y=class_counts, ax=ax)
|
| 112 |
+
ax.set_ylabel('Count')
|
| 113 |
+
ax.set_title('Class Distribution')
|
| 114 |
+
st.pyplot(fig)
|
| 115 |
+
|
| 116 |
# Create the network
|
| 117 |
net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
|
| 118 |
criterion = nn.CrossEntropyLoss()
|
|
|
|
| 143 |
st.write(f'Test Accuracy: {accuracy:.2f}%')
|
| 144 |
|
| 145 |
# Display results in a table
|
| 146 |
+
st.write('Ground Truth vs Predicted')
|
| 147 |
results = pd.DataFrame({
|
| 148 |
'Ground Truth': all_labels,
|
| 149 |
'Predicted': all_predicted
|
|
|
|
| 165 |
outputs = st.session_state['trained_model'](images)
|
| 166 |
_, predicted = torch.max(outputs, 1)
|
| 167 |
|
| 168 |
+
st.write('Ground Truth vs Predicted')
|
| 169 |
results = pd.DataFrame({
|
| 170 |
'Ground Truth': labels.numpy(),
|
| 171 |
'Predicted': predicted.numpy()
|
| 172 |
})
|
| 173 |
+
st.table(results.head(50)) # Display first 50 results for brevity
|