Spaces:
Running
Running
Update pages/4_LogisticRegressioin.py
Browse files
pages/4_LogisticRegressioin.py
CHANGED
|
@@ -1 +1,74 @@
|
|
| 1 |
-
#LogisticRegression
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#LogisticRegression
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.optim as optim
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
# Define the Logistic Regression Model
|
| 11 |
+
class LogisticRegressionModel(nn.Module):
|
| 12 |
+
def __init__(self):
|
| 13 |
+
super(LogisticRegressionModel, self).__init__()
|
| 14 |
+
self.linear = nn.Linear(1, 1)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
return torch.sigmoid(self.linear(x))
|
| 18 |
+
|
| 19 |
+
# Generate synthetic data
|
| 20 |
+
np.random.seed(0)
|
| 21 |
+
torch.manual_seed(0)
|
| 22 |
+
n_samples = 100
|
| 23 |
+
X = np.random.rand(n_samples, 1) * 10 # Random hours between 0 and 10
|
| 24 |
+
y = (X > 5).astype(int).flatten() # Pass if study hours > 5, otherwise fail
|
| 25 |
+
|
| 26 |
+
# Convert to torch tensors
|
| 27 |
+
X_tensor = torch.tensor(X, dtype=torch.float32)
|
| 28 |
+
y_tensor = torch.tensor(y, dtype=torch.float32)
|
| 29 |
+
|
| 30 |
+
# Streamlit interface
|
| 31 |
+
st.title('Logistic Regression with PyTorch')
|
| 32 |
+
|
| 33 |
+
# User inputs
|
| 34 |
+
num_epochs = st.number_input('Number of Epochs', min_value=100, max_value=5000, step=100, value=1000)
|
| 35 |
+
learning_rate = st.number_input('Learning Rate', min_value=0.0001, max_value=0.1, step=0.0001, format="%.4f", value=0.01)
|
| 36 |
+
test_hours = st.text_input('Test Study Hours (comma separated)', '4.0, 6.0, 9.0')
|
| 37 |
+
|
| 38 |
+
# Initialize the model
|
| 39 |
+
model = LogisticRegressionModel()
|
| 40 |
+
|
| 41 |
+
# Binary Cross Entropy Loss
|
| 42 |
+
criterion = nn.BCELoss()
|
| 43 |
+
|
| 44 |
+
# Stochastic Gradient Descent Optimizer
|
| 45 |
+
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
|
| 46 |
+
|
| 47 |
+
# Training the model
|
| 48 |
+
loss_values = []
|
| 49 |
+
for epoch in range(num_epochs):
|
| 50 |
+
outputs = model(X_tensor)
|
| 51 |
+
loss = criterion(outputs, y_tensor.view(-1, 1))
|
| 52 |
+
optimizer.zero_grad()
|
| 53 |
+
loss.backward()
|
| 54 |
+
optimizer.step()
|
| 55 |
+
loss_values.append(loss.item())
|
| 56 |
+
|
| 57 |
+
# Plot the loss curve
|
| 58 |
+
fig, ax = plt.subplots()
|
| 59 |
+
ax.plot(range(num_epochs), loss_values)
|
| 60 |
+
ax.set_xlabel('Epoch')
|
| 61 |
+
ax.set_ylabel('Loss')
|
| 62 |
+
ax.set_title('Loss Curve')
|
| 63 |
+
st.pyplot(fig)
|
| 64 |
+
|
| 65 |
+
# Evaluation
|
| 66 |
+
model.eval()
|
| 67 |
+
test_hours = [float(hour.strip()) for hour in test_hours.split(',')]
|
| 68 |
+
test_tensor = torch.tensor(test_hours, dtype=torch.float32).view(-1, 1)
|
| 69 |
+
predictions = model(test_tensor).detach().numpy()
|
| 70 |
+
|
| 71 |
+
# Display predictions
|
| 72 |
+
st.write('## Predictions')
|
| 73 |
+
for i, test_hour in enumerate(test_hours):
|
| 74 |
+
st.write(f"Study hours: {test_hour}, Predicted pass probability: {predictions[i][0]:.4f}")
|