Spaces:
Running
Running
Rename pages/1_MNIST_With_Images.py to pages/1_Simple_CNN.py
Browse files
pages/{1_MNIST_With_Images.py → 1_Simple_CNN.py}
RENAMED
|
@@ -5,49 +5,51 @@ import torch.optim as optim
|
|
| 5 |
import torchvision
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 8 |
|
| 9 |
-
# Define the
|
| 10 |
-
class
|
| 11 |
def __init__(self):
|
| 12 |
-
super(
|
| 13 |
-
self.
|
| 14 |
-
self.
|
| 15 |
-
self.
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def forward(self, x):
|
| 18 |
-
x =
|
|
|
|
|
|
|
| 19 |
x = torch.relu(self.fc1(x))
|
| 20 |
-
x =
|
| 21 |
-
x = self.fc3(x)
|
| 22 |
return x
|
| 23 |
|
| 24 |
# Function to train the model
|
| 25 |
def train_model(num_epochs):
|
| 26 |
-
# Define transformations
|
| 27 |
transform = transforms.Compose([
|
| 28 |
transforms.ToTensor(),
|
| 29 |
-
transforms.Normalize((0.5,), (0.5,))
|
| 30 |
])
|
| 31 |
|
| 32 |
-
|
| 33 |
-
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 34 |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
| 35 |
|
| 36 |
-
testset = torchvision.datasets.
|
| 37 |
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
net = Net()
|
| 44 |
criterion = nn.CrossEntropyLoss()
|
| 45 |
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
|
| 46 |
|
| 47 |
-
# Track loss over epochs
|
| 48 |
loss_values = []
|
|
|
|
| 49 |
|
| 50 |
-
# Training loop
|
| 51 |
for epoch in range(num_epochs):
|
| 52 |
running_loss = 0.0
|
| 53 |
for i, data in enumerate(trainloader, 0):
|
|
@@ -58,11 +60,8 @@ def train_model(num_epochs):
|
|
| 58 |
loss.backward()
|
| 59 |
optimizer.step()
|
| 60 |
running_loss += loss.item()
|
| 61 |
-
|
| 62 |
-
# Append average loss for this epoch
|
| 63 |
loss_values.append(running_loss / len(trainloader))
|
| 64 |
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
|
| 65 |
-
|
| 66 |
st.write('Finished Training')
|
| 67 |
|
| 68 |
# Plot the loss values
|
|
@@ -73,36 +72,39 @@ def train_model(num_epochs):
|
|
| 73 |
plt.ylabel('Loss')
|
| 74 |
st.pyplot(plt)
|
| 75 |
|
| 76 |
-
# Evaluate the network on the test data
|
| 77 |
correct = 0
|
| 78 |
total = 0
|
| 79 |
with torch.no_grad():
|
| 80 |
for data in testloader:
|
| 81 |
images, labels = data
|
| 82 |
outputs = net(images)
|
| 83 |
-
_, predicted = torch.max(outputs
|
| 84 |
total += labels.size(0)
|
| 85 |
correct += (predicted == labels).sum().item()
|
| 86 |
|
| 87 |
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
def
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
images, labels = dataiter.next()
|
| 93 |
-
images = images[:5]
|
| 94 |
-
labels = labels[:5]
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
st.
|
|
|
|
| 103 |
|
| 104 |
# Streamlit interface
|
| 105 |
-
st.title('
|
| 106 |
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
|
| 107 |
if st.button('Run'):
|
| 108 |
train_model(num_epochs)
|
|
|
|
| 5 |
import torchvision
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
+
# Define the CNN
|
| 11 |
+
class SimpleCNN(nn.Module):
|
| 12 |
def __init__(self):
|
| 13 |
+
super(SimpleCNN, self).__init__()
|
| 14 |
+
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
|
| 15 |
+
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
| 16 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 17 |
+
self.fc1 = nn.Linear(32 * 8 * 8, 128)
|
| 18 |
+
self.fc2 = nn.Linear(128, 10)
|
| 19 |
|
| 20 |
def forward(self, x):
|
| 21 |
+
x = self.pool(torch.relu(self.conv1(x)))
|
| 22 |
+
x = self.pool(torch.relu(self.conv2(x)))
|
| 23 |
+
x = x.view(-1, 32 * 8 * 8)
|
| 24 |
x = torch.relu(self.fc1(x))
|
| 25 |
+
x = self.fc2(x)
|
|
|
|
| 26 |
return x
|
| 27 |
|
| 28 |
# Function to train the model
|
| 29 |
def train_model(num_epochs):
|
|
|
|
| 30 |
transform = transforms.Compose([
|
| 31 |
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 33 |
])
|
| 34 |
|
| 35 |
+
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
|
|
|
| 36 |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
| 37 |
|
| 38 |
+
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
| 39 |
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
| 40 |
|
| 41 |
+
CIFAR10_CLASSES = [
|
| 42 |
+
'plane', 'car', 'bird', 'cat', 'deer',
|
| 43 |
+
'dog', 'frog', 'horse', 'ship', 'truck'
|
| 44 |
+
]
|
| 45 |
|
| 46 |
+
net = SimpleCNN()
|
|
|
|
| 47 |
criterion = nn.CrossEntropyLoss()
|
| 48 |
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
|
| 49 |
|
|
|
|
| 50 |
loss_values = []
|
| 51 |
+
st.write("Training the model...")
|
| 52 |
|
|
|
|
| 53 |
for epoch in range(num_epochs):
|
| 54 |
running_loss = 0.0
|
| 55 |
for i, data in enumerate(trainloader, 0):
|
|
|
|
| 60 |
loss.backward()
|
| 61 |
optimizer.step()
|
| 62 |
running_loss += loss.item()
|
|
|
|
|
|
|
| 63 |
loss_values.append(running_loss / len(trainloader))
|
| 64 |
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
|
|
|
|
| 65 |
st.write('Finished Training')
|
| 66 |
|
| 67 |
# Plot the loss values
|
|
|
|
| 72 |
plt.ylabel('Loss')
|
| 73 |
st.pyplot(plt)
|
| 74 |
|
|
|
|
| 75 |
correct = 0
|
| 76 |
total = 0
|
| 77 |
with torch.no_grad():
|
| 78 |
for data in testloader:
|
| 79 |
images, labels = data
|
| 80 |
outputs = net(images)
|
| 81 |
+
_, predicted = torch.max(outputs, 1)
|
| 82 |
total += labels.size(0)
|
| 83 |
correct += (predicted == labels).sum().item()
|
| 84 |
|
| 85 |
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
|
| 86 |
|
| 87 |
+
# Visualize some test images and their predictions
|
| 88 |
+
def imshow(img):
|
| 89 |
+
img = img / 2 + 0.5 # Unnormalize
|
| 90 |
+
npimg = img.numpy()
|
| 91 |
+
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
| 92 |
+
plt.show()
|
| 93 |
+
|
| 94 |
+
dataiter = iter(testloader)
|
| 95 |
images, labels = dataiter.next()
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
imshow(torchvision.utils.make_grid(images))
|
| 98 |
+
|
| 99 |
+
outputs = net(images)
|
| 100 |
+
_, predicted = torch.max(outputs, 1)
|
| 101 |
+
|
| 102 |
+
st.write('Predicted: ', ' '.join(f'{CIFAR10_CLASSES[predicted[j]]:5s}' for j in range(8)))
|
| 103 |
+
st.write('Actual: ', ' '.join(f'{CIFAR10_CLASSES[labels[j]]:5s}' for j in range(8)))
|
| 104 |
+
st.pyplot()
|
| 105 |
|
| 106 |
# Streamlit interface
|
| 107 |
+
st.title('CIFAR-10 Classification with PyTorch')
|
| 108 |
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
|
| 109 |
if st.button('Run'):
|
| 110 |
train_model(num_epochs)
|