Spaces:
Running
Running
Update pages/19_ResNet.py
Browse files- pages/19_ResNet.py +35 -103
pages/19_ResNet.py
CHANGED
|
@@ -6,10 +6,12 @@ import streamlit as st
|
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
import torch.optim as optim
|
|
|
|
| 9 |
from torchvision import datasets, models, transforms
|
| 10 |
from torch.utils.data import DataLoader, Subset
|
| 11 |
import numpy as np
|
| 12 |
import time
|
|
|
|
| 13 |
import matplotlib.pyplot as plt
|
| 14 |
|
| 15 |
# Streamlit Interface
|
|
@@ -33,21 +35,46 @@ transform = transforms.Compose([
|
|
| 33 |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
| 34 |
])
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
| 44 |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
|
| 45 |
|
| 46 |
dataloaders = {'train': train_loader, 'val': val_loader}
|
| 47 |
-
class_names =
|
| 48 |
|
| 49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Model Preparation Section
|
| 52 |
st.markdown("""
|
| 53 |
### Model Preparation
|
|
@@ -55,99 +82,4 @@ We will use a pre-trained ResNet-18 model and fine-tune the final fully connecte
|
|
| 55 |
""")
|
| 56 |
|
| 57 |
# Load Pre-trained ResNet Model
|
| 58 |
-
model_ft = models.
|
| 59 |
-
num_ftrs = model_ft.fc.in_features
|
| 60 |
-
model_ft.fc = nn.Linear(num_ftrs, len(class_names))
|
| 61 |
-
|
| 62 |
-
model_ft = model_ft.to(device)
|
| 63 |
-
|
| 64 |
-
# Define Loss Function and Optimizer
|
| 65 |
-
criterion = nn.CrossEntropyLoss()
|
| 66 |
-
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9)
|
| 67 |
-
|
| 68 |
-
# Training Section
|
| 69 |
-
st.markdown("""
|
| 70 |
-
### Training
|
| 71 |
-
We will train the model using stochastic gradient descent (SGD) with a learning rate scheduler. The training and validation loss and accuracy will be plotted to monitor the training process.
|
| 72 |
-
""")
|
| 73 |
-
|
| 74 |
-
# Train and Evaluate the Model
|
| 75 |
-
def train_model(model, criterion, optimizer, num_epochs=5):
|
| 76 |
-
best_model_wts = copy.deepcopy(model.state_dict())
|
| 77 |
-
best_acc = 0.0
|
| 78 |
-
train_loss_history = []
|
| 79 |
-
val_loss_history = []
|
| 80 |
-
train_acc_history = []
|
| 81 |
-
val_acc_history = []
|
| 82 |
-
|
| 83 |
-
for epoch in range(num_epochs):
|
| 84 |
-
st.write(f'Epoch {epoch+1}/{num_epochs}')
|
| 85 |
-
st.write('-' * 10)
|
| 86 |
-
|
| 87 |
-
for phase in ['train', 'val']:
|
| 88 |
-
if phase == 'train':
|
| 89 |
-
model.train()
|
| 90 |
-
else:
|
| 91 |
-
model.eval()
|
| 92 |
-
|
| 93 |
-
running_loss = 0.0
|
| 94 |
-
running_corrects = 0
|
| 95 |
-
|
| 96 |
-
for inputs, labels in dataloaders[phase]:
|
| 97 |
-
inputs = inputs.to(device)
|
| 98 |
-
labels = labels.to(device)
|
| 99 |
-
|
| 100 |
-
optimizer.zero_grad()
|
| 101 |
-
|
| 102 |
-
with torch.set_grad_enabled(phase == 'train'):
|
| 103 |
-
outputs = model(inputs)
|
| 104 |
-
_, preds = torch.max(outputs, 1)
|
| 105 |
-
loss = criterion(outputs, labels)
|
| 106 |
-
|
| 107 |
-
if phase == 'train':
|
| 108 |
-
loss.backward()
|
| 109 |
-
optimizer.step()
|
| 110 |
-
|
| 111 |
-
running_loss += loss.item() * inputs.size(0)
|
| 112 |
-
running_corrects += torch.sum(preds == labels.data)
|
| 113 |
-
|
| 114 |
-
epoch_loss = running_loss / len(dataloaders[phase].dataset)
|
| 115 |
-
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
|
| 116 |
-
|
| 117 |
-
if phase == 'train':
|
| 118 |
-
train_loss_history.append(epoch_loss)
|
| 119 |
-
train_acc_history.append(epoch_acc)
|
| 120 |
-
else:
|
| 121 |
-
val_loss_history.append(epoch_loss)
|
| 122 |
-
val_acc_history.append(epoch_acc)
|
| 123 |
-
|
| 124 |
-
st.write(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
| 125 |
-
|
| 126 |
-
if phase == 'val' and epoch_acc > best_acc:
|
| 127 |
-
best_acc = epoch_acc
|
| 128 |
-
best_model_wts = copy.deepcopy(model.state_dict())
|
| 129 |
-
|
| 130 |
-
model.load_state_dict(best_model_wts)
|
| 131 |
-
|
| 132 |
-
# Plot training history
|
| 133 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
|
| 134 |
-
ax1.plot(train_loss_history, label='Training Loss')
|
| 135 |
-
ax1.plot(val_loss_history, label='Validation Loss')
|
| 136 |
-
ax1.legend(loc='upper right')
|
| 137 |
-
ax1.set_title('Training and Validation Loss')
|
| 138 |
-
|
| 139 |
-
ax2.plot(train_acc_history, label='Training Accuracy')
|
| 140 |
-
ax2.plot(val_acc_history, label='Validation Accuracy')
|
| 141 |
-
ax2.legend(loc='lower right')
|
| 142 |
-
ax2.set_title('Training and Validation Accuracy')
|
| 143 |
-
|
| 144 |
-
st.pyplot(fig)
|
| 145 |
-
|
| 146 |
-
return model
|
| 147 |
-
|
| 148 |
-
if st.button('Train Model'):
|
| 149 |
-
model_ft = train_model(model_ft, criterion, optimizer_ft, num_epochs)
|
| 150 |
-
# Save the Model
|
| 151 |
-
torch.save(model_ft.state_dict(), 'fine_tuned_resnet.pth')
|
| 152 |
-
st.write("Model saved as 'fine_tuned_resnet.pth'")
|
| 153 |
-
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
import torch.optim as optim
|
| 9 |
+
import torchvision # Add this import
|
| 10 |
from torchvision import datasets, models, transforms
|
| 11 |
from torch.utils.data import DataLoader, Subset
|
| 12 |
import numpy as np
|
| 13 |
import time
|
| 14 |
+
import copy # Add this import
|
| 15 |
import matplotlib.pyplot as plt
|
| 16 |
|
| 17 |
# Streamlit Interface
|
|
|
|
| 35 |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
| 36 |
])
|
| 37 |
|
| 38 |
+
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
| 39 |
+
val_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
|
| 40 |
+
|
| 41 |
+
# Using only 1000 samples for simplicity
|
| 42 |
+
subset_indices = list(range(1000))
|
| 43 |
+
train_size = int(0.8 * len(subset_indices))
|
| 44 |
+
val_size = len(subset_indices) - train_size
|
| 45 |
+
|
| 46 |
+
train_indices = subset_indices[:train_size]
|
| 47 |
+
val_indices = subset_indices[train_size:]
|
| 48 |
+
|
| 49 |
+
train_dataset = Subset(train_dataset, train_indices)
|
| 50 |
+
val_dataset = Subset(val_dataset, val_indices)
|
| 51 |
|
| 52 |
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
|
| 53 |
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
|
| 54 |
|
| 55 |
dataloaders = {'train': train_loader, 'val': val_loader}
|
| 56 |
+
class_names = datasets.CIFAR10(root='./data', download=False).classes
|
| 57 |
|
| 58 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 59 |
|
| 60 |
+
# Visualize a few training images
|
| 61 |
+
st.markdown("#### Sample Training Images")
|
| 62 |
+
def imshow(inp, title=None):
|
| 63 |
+
inp = inp.numpy().transpose((1, 2, 0))
|
| 64 |
+
mean = np.array([0.485, 0.456, 0.406])
|
| 65 |
+
std = np.array([0.229, 0.224, 0.225])
|
| 66 |
+
inp = std * inp + mean
|
| 67 |
+
inp = np.clip(inp, 0, 1)
|
| 68 |
+
fig, ax = plt.subplots()
|
| 69 |
+
ax.imshow(inp)
|
| 70 |
+
if title is not None:
|
| 71 |
+
ax.set_title(title)
|
| 72 |
+
st.pyplot(fig)
|
| 73 |
+
|
| 74 |
+
inputs, classes = next(iter(dataloaders['train']))
|
| 75 |
+
out = torchvision.utils.make_grid(inputs)
|
| 76 |
+
imshow(out, title=[class_names[x] for x in classes])
|
| 77 |
+
|
| 78 |
# Model Preparation Section
|
| 79 |
st.markdown("""
|
| 80 |
### Model Preparation
|
|
|
|
| 82 |
""")
|
| 83 |
|
| 84 |
# Load Pre-trained ResNet Model
|
| 85 |
+
model_ft = models.resnet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|