Spaces:
Running
Running
Update pages/19_RNN_LSTM_Shakespeare.py
Browse files
pages/19_RNN_LSTM_Shakespeare.py
CHANGED
|
@@ -87,15 +87,14 @@ if st.button("Train and Generate"):
|
|
| 87 |
|
| 88 |
# Training the model
|
| 89 |
for epoch in range(num_epochs):
|
| 90 |
-
h = (torch.zeros(num_layers,
|
| 91 |
epoch_loss = 0
|
| 92 |
for i in range(len(dataX)):
|
| 93 |
inputs = X_tensor[i].unsqueeze(0)
|
| 94 |
targets = Y_tensor[i].unsqueeze(0)
|
| 95 |
|
| 96 |
# Forward pass
|
| 97 |
-
outputs, h = model(inputs, h)
|
| 98 |
-
h = (h[0].detach(), h[1].detach())
|
| 99 |
loss = criterion(outputs, targets)
|
| 100 |
|
| 101 |
# Backward pass and optimization
|
|
|
|
| 87 |
|
| 88 |
# Training the model
|
| 89 |
for epoch in range(num_epochs):
|
| 90 |
+
h = (torch.zeros(num_layers, 1, hidden_size), torch.zeros(num_layers, 1, hidden_size))
|
| 91 |
epoch_loss = 0
|
| 92 |
for i in range(len(dataX)):
|
| 93 |
inputs = X_tensor[i].unsqueeze(0)
|
| 94 |
targets = Y_tensor[i].unsqueeze(0)
|
| 95 |
|
| 96 |
# Forward pass
|
| 97 |
+
outputs, h = model(inputs, (h[0].detach(), h[1].detach()))
|
|
|
|
| 98 |
loss = criterion(outputs, targets)
|
| 99 |
|
| 100 |
# Backward pass and optimization
|