Spaces:
Running
Running
Create 21_NLP_Transformer.py
Browse files- pages/21_NLP_Transformer.py +89 -0
pages/21_NLP_Transformer.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.utils.data import DataLoader
|
| 3 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_scheduler
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from tqdm.auto import tqdm
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
# Load and preprocess the dataset
|
| 10 |
+
dataset = load_dataset("imdb")
|
| 11 |
+
train_dataset = dataset["train"]
|
| 12 |
+
test_dataset = dataset["test"]
|
| 13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 14 |
+
|
| 15 |
+
def preprocess_function(examples):
|
| 16 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
| 17 |
+
|
| 18 |
+
encoded_train_dataset = train_dataset.map(preprocess_function, batched=True)
|
| 19 |
+
encoded_test_dataset = test_dataset.map(preprocess_function, batched=True)
|
| 20 |
+
train_dataloader = DataLoader(encoded_train_dataset, shuffle=True, batch_size=8)
|
| 21 |
+
test_dataloader = DataLoader(encoded_test_dataset, batch_size=8)
|
| 22 |
+
|
| 23 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
| 24 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
| 25 |
+
num_epochs = 3
|
| 26 |
+
num_training_steps = num_epochs * len(train_dataloader)
|
| 27 |
+
lr_scheduler = get_scheduler(name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
|
| 28 |
+
|
| 29 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 30 |
+
model.to(device)
|
| 31 |
+
|
| 32 |
+
# Training Loop with loss tracking
|
| 33 |
+
loss_values = []
|
| 34 |
+
|
| 35 |
+
model.train()
|
| 36 |
+
for epoch in range(num_epochs):
|
| 37 |
+
for batch in train_dataloader:
|
| 38 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 39 |
+
outputs = model(**batch)
|
| 40 |
+
loss = outputs.loss
|
| 41 |
+
loss.backward()
|
| 42 |
+
|
| 43 |
+
optimizer.step()
|
| 44 |
+
lr_scheduler.step()
|
| 45 |
+
optimizer.zero_grad()
|
| 46 |
+
loss_values.append(loss.item())
|
| 47 |
+
|
| 48 |
+
# Define evaluation function
|
| 49 |
+
def evaluate(model, dataloader):
|
| 50 |
+
model.eval()
|
| 51 |
+
correct = 0
|
| 52 |
+
total = 0
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
for batch in dataloader:
|
| 55 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 56 |
+
outputs = model(**batch)
|
| 57 |
+
predictions = outputs.logits.argmax(dim=-1)
|
| 58 |
+
correct += (predictions == batch["labels"]).sum().item()
|
| 59 |
+
total += batch["labels"].size(0)
|
| 60 |
+
return correct / total
|
| 61 |
+
|
| 62 |
+
# Evaluate the model on the test set
|
| 63 |
+
accuracy = evaluate(model, test_dataloader)
|
| 64 |
+
|
| 65 |
+
# Streamlit Interface
|
| 66 |
+
st.title("Sentiment Analysis with BERT")
|
| 67 |
+
st.write(f"Test Accuracy: {accuracy * 100:.2f}%")
|
| 68 |
+
|
| 69 |
+
# Plot loss values
|
| 70 |
+
st.write("### Training Loss")
|
| 71 |
+
plt.figure(figsize=(10, 6))
|
| 72 |
+
plt.plot(loss_values, label="Training Loss")
|
| 73 |
+
plt.xlabel("Training Steps")
|
| 74 |
+
plt.ylabel("Loss")
|
| 75 |
+
plt.legend()
|
| 76 |
+
st.pyplot(plt)
|
| 77 |
+
|
| 78 |
+
# Text input for prediction
|
| 79 |
+
st.write("### Predict Sentiment")
|
| 80 |
+
user_input = st.text_area("Enter text:", "I loved this movie!")
|
| 81 |
+
if user_input:
|
| 82 |
+
inputs = tokenizer(user_input, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
| 83 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 84 |
+
model.eval()
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**inputs)
|
| 87 |
+
prediction = outputs.logits.argmax(dim=-1).item()
|
| 88 |
+
sentiment = "Positive" if prediction == 1 else "Negative"
|
| 89 |
+
st.write(f"Sentiment: **{sentiment}**")
|