Spaces:
Running
Running
Create 23_NLP_Transformer_Prompt3.py
Browse files
pages/23_NLP_Transformer_Prompt3.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
|
| 7 |
+
# Load pre-trained model and tokenizer
|
| 8 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 11 |
+
|
| 12 |
+
def analyze_sentiment(text):
|
| 13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 16 |
+
return probs.detach().numpy()[0]
|
| 17 |
+
|
| 18 |
+
st.title("Sentiment Analysis with Transformer")
|
| 19 |
+
|
| 20 |
+
user_input = st.text_area("Enter text for sentiment analysis:", "I love this product!")
|
| 21 |
+
|
| 22 |
+
if st.button("Analyze Sentiment"):
|
| 23 |
+
sentiment_scores = analyze_sentiment(user_input)
|
| 24 |
+
|
| 25 |
+
st.write("Sentiment Scores:")
|
| 26 |
+
st.write(f"Negative: {sentiment_scores[0]:.4f}")
|
| 27 |
+
st.write(f"Positive: {sentiment_scores[1]:.4f}")
|
| 28 |
+
|
| 29 |
+
# Create and display multiple graphs
|
| 30 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
|
| 31 |
+
|
| 32 |
+
# Bar plot
|
| 33 |
+
ax1.bar(['Negative', 'Positive'], sentiment_scores)
|
| 34 |
+
ax1.set_ylabel('Score')
|
| 35 |
+
ax1.set_title('Sentiment Analysis Results (Bar Plot)')
|
| 36 |
+
|
| 37 |
+
# Pie chart
|
| 38 |
+
ax2.pie(sentiment_scores, labels=['Negative', 'Positive'], autopct='%1.1f%%')
|
| 39 |
+
ax2.set_title('Sentiment Analysis Results (Pie Chart)')
|
| 40 |
+
|
| 41 |
+
st.pyplot(fig)
|
| 42 |
+
|
| 43 |
+
# Heatmap
|
| 44 |
+
fig, ax = plt.subplots(figsize=(8, 2))
|
| 45 |
+
sns.heatmap([sentiment_scores], annot=True, cmap="coolwarm", cbar=False, ax=ax)
|
| 46 |
+
ax.set_xticklabels(['Negative', 'Positive'])
|
| 47 |
+
ax.set_yticklabels(['Sentiment'])
|
| 48 |
+
ax.set_title('Sentiment Analysis Results (Heatmap)')
|
| 49 |
+
st.pyplot(fig)
|
| 50 |
+
|
| 51 |
+
st.write("Note: This example uses a pre-trained model for English sentiment analysis.")
|