Spaces:
Running
Running
Create 23_gan.py
Browse files- pages/23_gan.py +118 -0
pages/23_gan.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
import torchvision.datasets as datasets
|
| 6 |
+
import torchvision.utils as vutils
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
# Load and Preprocess the MNIST Dataset
|
| 11 |
+
transform = transforms.Compose([
|
| 12 |
+
transforms.ToTensor(),
|
| 13 |
+
transforms.Normalize((0.5,), (0.5,))
|
| 14 |
+
])
|
| 15 |
+
|
| 16 |
+
mnist_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
|
| 17 |
+
dataloader = torch.utils.data.DataLoader(mnist_dataset, batch_size=128, shuffle=True)
|
| 18 |
+
|
| 19 |
+
# Define the Generator and Discriminator Networks
|
| 20 |
+
class Generator(nn.Module):
|
| 21 |
+
def __init__(self):
|
| 22 |
+
super(Generator, self).__init__()
|
| 23 |
+
self.main = nn.Sequential(
|
| 24 |
+
nn.Linear(100, 256),
|
| 25 |
+
nn.ReLU(True),
|
| 26 |
+
nn.Linear(256, 512),
|
| 27 |
+
nn.ReLU(True),
|
| 28 |
+
nn.Linear(512, 1024),
|
| 29 |
+
nn.ReLU(True),
|
| 30 |
+
nn.Linear(1024, 28*28),
|
| 31 |
+
nn.Tanh()
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, input):
|
| 35 |
+
return self.main(input).view(-1, 1, 28, 28)
|
| 36 |
+
|
| 37 |
+
class Discriminator(nn.Module):
|
| 38 |
+
def __init__(self):
|
| 39 |
+
super(Discriminator, self).__init__()
|
| 40 |
+
self.main = nn.Sequential(
|
| 41 |
+
nn.Linear(28*28, 1024),
|
| 42 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 43 |
+
nn.Linear(1024, 512),
|
| 44 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 45 |
+
nn.Linear(512, 256),
|
| 46 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 47 |
+
nn.Linear(256, 1),
|
| 48 |
+
nn.Sigmoid()
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
def forward(self, input):
|
| 52 |
+
return self.main(input.view(-1, 28*28))
|
| 53 |
+
|
| 54 |
+
# Initialize Models, Optimizers, and Loss Function
|
| 55 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 56 |
+
|
| 57 |
+
netG = Generator().to(device)
|
| 58 |
+
netD = Discriminator().to(device)
|
| 59 |
+
|
| 60 |
+
criterion = nn.BCELoss()
|
| 61 |
+
|
| 62 |
+
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
|
| 63 |
+
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))
|
| 64 |
+
|
| 65 |
+
# Train the GAN
|
| 66 |
+
num_epochs = 50
|
| 67 |
+
fixed_noise = torch.randn(64, 100, device=device)
|
| 68 |
+
|
| 69 |
+
for epoch in range(num_epochs):
|
| 70 |
+
for i, (data, _) in enumerate(dataloader):
|
| 71 |
+
# Train Discriminator
|
| 72 |
+
netD.zero_grad()
|
| 73 |
+
real_data = data.to(device)
|
| 74 |
+
b_size = real_data.size(0)
|
| 75 |
+
label = torch.full((b_size,), 1., dtype=torch.float, device=device)
|
| 76 |
+
|
| 77 |
+
output = netD(real_data).view(-1)
|
| 78 |
+
errD_real = criterion(output, label)
|
| 79 |
+
errD_real.backward()
|
| 80 |
+
|
| 81 |
+
noise = torch.randn(b_size, 100, device=device)
|
| 82 |
+
fake_data = netG(noise)
|
| 83 |
+
label.fill_(0.)
|
| 84 |
+
|
| 85 |
+
output = netD(fake_data.detach()).view(-1)
|
| 86 |
+
errD_fake = criterion(output, label)
|
| 87 |
+
errD_fake.backward()
|
| 88 |
+
optimizerD.step()
|
| 89 |
+
|
| 90 |
+
# Train Generator
|
| 91 |
+
netG.zero_grad()
|
| 92 |
+
label.fill_(1.)
|
| 93 |
+
output = netD(fake_data).view(-1)
|
| 94 |
+
errG = criterion(output, label)
|
| 95 |
+
errG.backward()
|
| 96 |
+
optimizerG.step()
|
| 97 |
+
|
| 98 |
+
print(f'Epoch [{epoch+1}/{num_epochs}] Loss_D: {errD_real.item()+errD_fake.item()} Loss_G: {errG.item()}')
|
| 99 |
+
|
| 100 |
+
if epoch % 10 == 0:
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
fake_images = netG(fixed_noise).detach().cpu()
|
| 103 |
+
plt.figure(figsize=(10, 10))
|
| 104 |
+
plt.axis("off")
|
| 105 |
+
plt.title(f"Generated Images at Epoch {epoch}")
|
| 106 |
+
plt.imshow(np.transpose(vutils.make_grid(fake_images, padding=2, normalize=True), (1, 2, 0)))
|
| 107 |
+
plt.show()
|
| 108 |
+
|
| 109 |
+
# Generate and Visualize Synthetic Images
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
noise = torch.randn(64, 100, device=device)
|
| 112 |
+
fake_images = netG(noise).detach().cpu()
|
| 113 |
+
|
| 114 |
+
plt.figure(figsize=(10, 10))
|
| 115 |
+
plt.axis("off")
|
| 116 |
+
plt.title("Generated Images")
|
| 117 |
+
plt.imshow(np.transpose(vutils.make_grid(fake_images, padding=2, normalize=True), (1, 2, 0)))
|
| 118 |
+
plt.show()
|