File size: 23,873 Bytes
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
 
 
53dfff0
 
 
 
 
9d1ea3d
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
 
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
53dfff0
 
 
9d1ea3d
53dfff0
 
 
 
 
 
 
9d1ea3d
53dfff0
9d1ea3d
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ee4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ee4a0
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
a2ee4a0
9d1ea3d
53dfff0
 
9d1ea3d
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
 
 
 
 
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1ea3d
53dfff0
 
9d1ea3d
 
53dfff0
 
 
a187c12
 
 
 
 
 
 
 
 
 
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2ee4a0
 
 
 
 
 
 
53dfff0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
import json
import gc
import traceback
from typing import Optional, Tuple, Any

import torch
import gradio as gr
import supervision as sv
from PIL import Image

# Try to import optional dependencies
try:
    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
        AutoModelForImageTextToText,
        AutoProcessor,
        BitsAndBytesConfig,
    )
except Exception:
    AutoModelForCausalLM = None
    AutoTokenizer = None
    AutoModelForImageTextToText = None
    AutoProcessor = None
    BitsAndBytesConfig = None

# Try to import huggingface_hub for model downloading
try:
    from huggingface_hub import hf_hub_download
except ImportError:
    hf_hub_download = None

# Import RF-DETR (assumes it's in the same directory or installed)
try:
    from rfdetr import RFDETRMedium
except ImportError:
    print("Warning: RF-DETR not found. Please ensure it's properly installed.")
    RFDETRMedium = None

# ============================================================================
# Configuration for Hugging Face Spaces
# ============================================================================

class SpacesConfig:
    """Configuration optimized for Hugging Face Spaces."""

    def __init__(self):
        # Get HF token from environment
        hf_token = os.environ.get('HF_TOKEN') or os.environ.get('HUGGINGFACE_TOKEN')
        
        self.settings = {
            'results_dir': '/tmp/results',
            'checkpoint': None,
            'hf_model_repo': 'edeler/lorai',  # Hugging Face model repository
            'hf_model_filename': 'lorai.pth',
            'hf_token': hf_token,
            'resolution': 576,
            'threshold': 0.7,
            'use_llm': True,
            'llm_model_id': 'google/medgemma-4b-it',
            'llm_max_new_tokens': 200,
            'llm_temperature': 0.2,
            'llm_4bit': True,
            'enable_caching': True,
            'max_cache_size': 100,
        }

    def get(self, key: str, default: Any = None) -> Any:
        return self.settings.get(key, default)
    
    def set_hf_model_repo(self, repo_id: str, filename: str = 'lorai.pth'):
        """Set Hugging Face model repository."""
        self.settings['hf_model_repo'] = repo_id
        self.settings['hf_model_filename'] = filename

# ============================================================================
# Memory Management (simplified for Spaces)
# ============================================================================

class MemoryManager:
    """Simplified memory management for Spaces."""

    def __init__(self):
        self.memory_thresholds = {
            'gpu_warning': 0.8,
            'system_warning': 0.85,
        }

    def cleanup_memory(self, force: bool = False) -> None:
        """Perform memory cleanup."""
        try:
            gc.collect()
            if torch and torch.cuda.is_available():
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
        except Exception as e:
            print(f"Memory cleanup error: {e}")

# Global memory manager
memory_manager = MemoryManager()

# ============================================================================
# Model Loading
# ============================================================================

def find_checkpoint(hf_repo: Optional[str] = None, hf_filename: str = 'lorai.pth') -> Optional[str]:
    """Find RF-DETR checkpoint in various locations or download from Hugging Face Hub."""
    
    # First check if we should download from Hugging Face
    repo_id = hf_repo or os.environ.get('HF_MODEL_REPO')
    
    if repo_id and hf_hub_download is not None:
        try:
            print(f"Downloading checkpoint from Hugging Face Hub: {repo_id}/{hf_filename}")
            checkpoint_path = hf_hub_download(
                repo_id=repo_id,
                filename=hf_filename,
                cache_dir="/tmp/hf_cache"
            )
            print(f"βœ“ Downloaded checkpoint to: {checkpoint_path}")
            return checkpoint_path
        except Exception as e:
            print(f"Warning: Failed to download from Hugging Face Hub: {e}")
            print("Falling back to local checkpoints...")
    
    # Fall back to local file search
    candidates = [
        "lorai.pth",  # Current directory
        "rf-detr-medium.pth",
        "/tmp/results/checkpoint_best_total.pth",
        "/tmp/results/checkpoint_best_ema.pth",
        "/tmp/results/checkpoint_best_regular.pth",
        "/tmp/results/checkpoint.pth",
    ]

    for path in candidates:
        if os.path.isfile(path):
            print(f"Found local checkpoint: {path}")
            return path
    
    return None

def load_model(checkpoint_path: str, resolution: int):
    """Load RF-DETR model."""
    if RFDETRMedium is None:
        raise RuntimeError("RF-DETR not available. Please install it properly.")

    model = RFDETRMedium(pretrain_weights=checkpoint_path, resolution=resolution)
    try:
        model.optimize_for_inference()
    except Exception:
        pass
    return model

# ============================================================================
# LLM Integration
# ============================================================================

class TextGenerator:
    """Simplified text generator for Spaces."""

    def __init__(self, model_id: str, max_tokens: int = 200, temperature: float = 0.2):
        self.model_id = model_id
        self.max_tokens = max_tokens
        self.temperature = temperature
        self.model = None
        self.tokenizer = None
        self.processor = None
        self.is_multimodal = False

    def load_model(self, hf_token: Optional[str] = None):
        """Load the LLM model."""
        if self.model is not None:
            return

        if (AutoModelForCausalLM is None and AutoModelForImageTextToText is None):
            raise RuntimeError("Transformers not available")

        # Clear memory before loading
        memory_manager.cleanup_memory()

        print(f"Loading model: {self.model_id}")

        model_kwargs = {
            "device_map": "auto",
            "low_cpu_mem_usage": True,
        }
        
        # Add token if provided
        if hf_token:
            model_kwargs["token"] = hf_token

        if torch and torch.cuda.is_available():
            model_kwargs["torch_dtype"] = torch.bfloat16

        # Use 4-bit quantization if available
        if BitsAndBytesConfig is not None:
            try:
                compute_dtype = torch.bfloat16 if torch and torch.cuda.is_available() else torch.float16
                model_kwargs["quantization_config"] = BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=compute_dtype,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4"
                )
                model_kwargs["torch_dtype"] = compute_dtype
            except Exception:
                pass

        # Check if it's a multimodal model
        is_multimodal = "medgemma" in self.model_id.lower()

        if is_multimodal and AutoModelForImageTextToText is not None and AutoProcessor is not None:
            self.processor = AutoProcessor.from_pretrained(self.model_id, token=hf_token)
            self.model = AutoModelForImageTextToText.from_pretrained(self.model_id, **model_kwargs)
            self.is_multimodal = True
        elif AutoModelForCausalLM is not None and AutoTokenizer is not None:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, token=hf_token)
            self.model = AutoModelForCausalLM.from_pretrained(self.model_id, **model_kwargs)
            self.is_multimodal = False
        else:
            raise RuntimeError("Required model classes not available")

        print("βœ“ Model loaded successfully")

    def generate(self, text: str, image: Optional[Image.Image] = None, hf_token: Optional[str] = None) -> str:
        """Generate text using the loaded model."""
        self.load_model(hf_token)

        if self.model is None:
            return f"[Model not loaded: {text}]"

        try:
            # Create messages
            system_text = "You are a concise medical assistant. Provide a brief, clear summary of detection results. Avoid repetition and be direct. Do not give medical advice."
            user_text = f"Summarize these detection results in 3 clear sentences:\n\n{text}"

            if self.is_multimodal:
                # Multimodal model
                user_content = [{"type": "text", "text": user_text}]
                if image is not None:
                    user_content.append({"type": "image", "image": image})

                messages = [
                    {"role": "system", "content": [{"type": "text", "text": system_text}]},
                    {"role": "user", "content": user_content},
                ]

                inputs = self.processor.apply_chat_template(
                    messages,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt",
                )

                if torch:
                    inputs = inputs.to(self.model.device, dtype=torch.bfloat16)

                with torch.inference_mode():
                    generation = self.model.generate(
                        **inputs,
                        max_new_tokens=self.max_tokens,
                        do_sample=self.temperature > 0,
                        temperature=max(0.01, self.temperature) if self.temperature > 0 else None,
                        use_cache=False,
                    )

                input_len = inputs["input_ids"].shape[-1]
                generation = generation[0][input_len:]
                decoded = self.processor.decode(generation, skip_special_tokens=True)
                return decoded.strip()

            else:
                # Text-only model
                messages = [
                    {"role": "system", "content": system_text},
                    {"role": "user", "content": user_text},
                ]

                inputs = self.tokenizer.apply_chat_template(
                    messages,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt",
                )

                inputs = inputs.to(self.model.device)

                with torch.inference_mode():
                    generation = self.model.generate(
                        **inputs,
                        max_new_tokens=self.max_tokens,
                        do_sample=self.temperature > 0,
                        temperature=max(0.01, self.temperature) if self.temperature > 0 else None,
                        use_cache=False,
                    )

                input_len = inputs["input_ids"].shape[-1]
                generation = generation[0][input_len:]
                decoded = self.tokenizer.decode(generation, skip_special_tokens=True)
                return decoded.strip()

        except Exception as e:
            error_msg = f"[Generation error: {e}]"
            print(f"Generation error: {traceback.format_exc()}")
            return f"{error_msg}\n\n{text}"

# ============================================================================
# Application State
# ============================================================================

class AppState:
    """Application state for Spaces."""

    def __init__(self):
        self.config = SpacesConfig()
        self.model = None
        self.class_names = None
        self.text_generator = None

    def load_model(self):
        """Load the detection model."""
        if self.model is not None:
            return

        checkpoint = find_checkpoint(
            hf_repo=self.config.get('hf_model_repo'),
            hf_filename=self.config.get('hf_model_filename', 'lorai.pth')
        )
        if not checkpoint:
            hf_repo = self.config.get('hf_model_repo') or os.environ.get('HF_MODEL_REPO')
            if hf_repo:
                raise FileNotFoundError(
                    f"No RF-DETR checkpoint found. Could not download from '{hf_repo}'. "
                    "Please check the repository ID and ensure the model file exists."
                )
            else:
                raise FileNotFoundError(
                    "No RF-DETR checkpoint found. Please either:\n"
                    "1. Set HF_MODEL_REPO environment variable (e.g., 'edeler/lorai'), or\n"
                    "2. Upload lorai.pth to your Space's root directory"
                )

        print(f"Loading RF-DETR from: {checkpoint}")
        self.model = load_model(checkpoint, self.config.get('resolution'))

        # Try to load class names
        try:
            results_json = "/tmp/results/results.json"
            if os.path.isfile(results_json):
                with open(results_json, 'r') as f:
                    data = json.load(f)
                classes = []
                for split in ("valid", "test", "train"):
                    if "class_map" in data and split in data["class_map"]:
                        for item in data["class_map"][split]:
                            name = item.get("class")
                            if name and name != "all" and name not in classes:
                                classes.append(name)
                self.class_names = classes if classes else None
        except Exception:
            pass

        print("βœ“ RF-DETR model loaded")

    def preload_all_models(self):
        """Preload both detection and LLM models into VRAM at startup."""
        print("=" * 60)
        print("Preloading all models into VRAM...")
        print("=" * 60)
        
        # Load detection model
        print("\n[1/2] Loading RF-DETR detection model...")
        self.load_model()
        
        # Load LLM model
        if self.config.get('use_llm'):
            print("\n[2/2] Loading MedGemma LLM model...")
            try:
                model_size = "4B"  # Default to 4B model
                generator = self.get_text_generator(model_size)
                hf_token = self.config.get('hf_token')
                generator.load_model(hf_token)
                print("βœ“ MedGemma model loaded and ready")
            except Exception as e:
                print(f"⚠️ Warning: Could not preload LLM model: {e}")
                print("LLM will be loaded on first use instead")
        
        print("\n" + "=" * 60)
        print("βœ“ All models loaded and ready in VRAM!")
        print("=" * 60 + "\n")

    def get_text_generator(self, model_size: str = "4B") -> TextGenerator:
        """Get or create text generator."""
        # Determine model ID based on size selection
        model_id = 'google/medgemma-27b-it' if model_size == "27B" else 'google/medgemma-4b-it'

        # Check if we need to create a new generator for different model size
        if (self.text_generator is None or
            hasattr(self.text_generator, 'model_id') and
            self.text_generator.model_id != model_id):

            max_tokens = self.config.get('llm_max_new_tokens')
            temperature = self.config.get('llm_temperature')

            self.text_generator = TextGenerator(model_id, max_tokens, temperature)
        return self.text_generator

# ============================================================================
# UI and Inference
# ============================================================================

def create_detection_interface():
    """Create the Gradio interface."""

    # Color palette for annotations
    COLOR_PALETTE = sv.ColorPalette.from_hex([
        "#ffff00", "#ff9b00", "#ff66ff", "#3399ff", "#ff66b2",
        "#ff8080", "#b266ff", "#9999ff", "#66ffff", "#33ff99",
        "#66ff66", "#99ff00",
    ])

    def annotate_image(image: Image.Image, threshold: float, model_size: str = "4B") -> Tuple[Image.Image, str]:
        """Process an image and return annotated version with description."""

        if image is None:
            return None, "Please upload an image."

        try:
            # Models are preloaded at startup, but check just in case
            if app_state.model is None:
                app_state.load_model()

            # Run detection
            detections = app_state.model.predict(image, threshold=threshold)

            # Annotate image
            bbox_annotator = sv.BoxAnnotator(color=COLOR_PALETTE, thickness=2)
            label_annotator = sv.LabelAnnotator(text_scale=0.5, text_color=sv.Color.BLACK)

            labels = []
            for i in range(len(detections)):
                class_id = int(detections.class_id[i]) if detections.class_id is not None else None
                conf = float(detections.confidence[i]) if detections.confidence is not None else 0.0

                if app_state.class_names and class_id is not None:
                    if 0 <= class_id < len(app_state.class_names):
                        label_name = app_state.class_names[class_id]
                    else:
                        label_name = str(class_id)
                else:
                    label_name = str(class_id) if class_id is not None else "object"

                labels.append(f"{label_name} {conf:.2f}")

            annotated = image.copy()
            annotated = bbox_annotator.annotate(annotated, detections)
            annotated = label_annotator.annotate(annotated, detections, labels)

            # Generate description
            description = f"Found {len(detections)} detections above threshold {threshold}:\n\n"

            if len(detections) > 0:
                counts = {}
                for i in range(len(detections)):
                    class_id = int(detections.class_id[i]) if detections.class_id is not None else None
                    if app_state.class_names and class_id is not None:
                        if 0 <= class_id < len(app_state.class_names):
                            name = app_state.class_names[class_id]
                        else:
                            name = str(class_id)
                    else:
                        name = str(class_id) if class_id is not None else "object"
                    counts[name] = counts.get(name, 0) + 1

                for name, count in counts.items():
                    description += f"- {count}Γ— {name}\n"

                # Use LLM for description if enabled
                if app_state.config.get('use_llm'):
                    try:
                        generator = app_state.get_text_generator(model_size)
                        hf_token = app_state.config.get('hf_token')
                        # Model is already preloaded, just generate
                        llm_description = generator.generate(description, image=annotated, hf_token=hf_token)
                        description = llm_description
                    except Exception as e:
                        print(f"LLM generation failed: {e}")
                        # Just use the basic description if LLM fails
                        pass
            else:
                description += "No objects detected above the confidence threshold."

            return annotated, description

        except Exception as e:
            error_msg = f"Error processing image: {str(e)}"
            print(f"Processing error: {traceback.format_exc()}")
            return None, error_msg

    # Create the interface
    with gr.Blocks(title="Medical Image Analysis", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ₯ Medical Image Analysis")
        gr.Markdown("Upload a medical image to detect and analyze findings using AI.")
        
        # Check if HF token is available
        hf_token = app_state.config.get('hf_token')
        if not hf_token:
            gr.Markdown("⚠️ **Note:** HF_TOKEN not set. AI text generation will be disabled. Detection will still work.")
        else:
            gr.Markdown("βœ… **AI-powered analysis enabled** using MedGemma 4B")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil", label="Upload Image", height=400)
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.7,
                    step=0.05,
                    label="Confidence Threshold",
                    info="Higher values = fewer but more confident detections"
                )

                model_size_radio = gr.Radio(
                    choices=["4B"],
                    value="4B",
                    label="MedGemma Model Size",
                    info="Using MedGemma 4B for AI-generated analysis",
                    visible=False  # Hide since only one option
                )

                analyze_btn = gr.Button("πŸ” Analyze Image", variant="primary")
                
                # Example images
                gr.Examples(
                    examples=[
                        ["1.jpg"],
                        ["2.jpg"],
                        ["3.jpg"],
                    ],
                    inputs=input_image,
                    label="Example Images",
                    examples_per_page=3
                )

            with gr.Column():
                output_image = gr.Image(type="pil", label="Results", height=400)
                output_text = gr.Textbox(
                    label="Analysis Results",
                    lines=8,
                    max_lines=15,
                    show_copy_button=True
                )

        # Wire up the interface
        analyze_btn.click(
            fn=annotate_image,
            inputs=[input_image, threshold_slider, model_size_radio],
            outputs=[output_image, output_text]
        )

        # Also run when image is uploaded
        input_image.change(
            fn=annotate_image,
            inputs=[input_image, threshold_slider, model_size_radio],
            outputs=[output_image, output_text]
        )

        # Footer
        gr.Markdown("---")

    return demo

# ============================================================================
# Main Application
# ============================================================================

# Global app state
app_state = AppState()

def main():
    """Main entry point for the Spaces app."""
    print("πŸš€ Starting Medical Image Analysis App")

    # Ensure results directory exists
    os.makedirs(app_state.config.get('results_dir'), exist_ok=True)

    # Preload all models into VRAM
    try:
        app_state.preload_all_models()
    except Exception as e:
        print(f"⚠️ Warning: Failed to preload models: {e}")
        print("Models will be loaded on first use instead")

    # Create and launch the interface
    demo = create_detection_interface()

    # Launch with Spaces-optimized settings
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,  # Spaces handles this
        show_error=True,
        show_api=False,
    )

if __name__ == "__main__":
    main()