Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import pandas as pd | |
| import numpy as np | |
| import plotly.express as px | |
| from plotly.graph_objs import Figure | |
| from src.leaderboard.filter_models import FLAGGED_MODELS | |
| from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS, external_eval_results, NUMERIC_INTERVALS | |
| from src.leaderboard.read_evals import EvalResult | |
| import copy | |
| def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: | |
| """ | |
| Generates a DataFrame containing the maximum scores until each date. | |
| :param results_df: A DataFrame containing result information including metric scores and dates. | |
| :return: A new DataFrame containing the maximum scores until each date for every metric. | |
| """ | |
| # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it | |
| #create dataframe with EvalResult dataclass columns, even if raw_data is empty | |
| raw_data = copy.deepcopy(raw_data) | |
| for external_row in external_eval_results: | |
| raw_data.append(EvalResult(**external_row)) | |
| results_df = pd.DataFrame(raw_data, columns=EvalResult.__dataclass_fields__.keys()) | |
| #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
| #convert date to datetime | |
| results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
| #convert to simple date string 2025-04-26 | |
| results_df["date"] = results_df["date"].dt.strftime("%Y-%m-%d") | |
| results_df.sort_values(by="date", inplace=True) | |
| # Step 2: Initialize the scores dictionary | |
| scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} | |
| # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary | |
| for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: | |
| current_max = 0 | |
| last_date = "" | |
| column = task.col_name | |
| for _, row in results_df.iterrows(): | |
| current_model = row["full_model"] | |
| # We ignore models that are flagged/no longer on the hub/not finished | |
| to_ignore = not row["still_on_hub"] or row["flagged"] or current_model in FLAGGED_MODELS or row["status"] != "FINISHED" | |
| if to_ignore: | |
| continue | |
| current_date = row["date"] | |
| if task.benchmark == "Average": | |
| current_score = np.mean(list(row["results"].values())) | |
| else: | |
| if task.benchmark not in row["results"]: | |
| continue | |
| current_score = row["results"][task.benchmark] | |
| if current_score > current_max: | |
| if current_date == last_date and len(scores[column]) > 0: | |
| scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} | |
| else: | |
| scores[column].append({"model": current_model, "date": current_date, "score": current_score}) | |
| current_max = current_score | |
| last_date = current_date | |
| # Step 4: Return all dictionaries as DataFrames | |
| return {k: pd.DataFrame(v, columns=["model", "date", "score"]) for k, v in scores.items()} | |
| def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: | |
| """ | |
| Transforms the scores DataFrame into a new format suitable for plotting. | |
| :param scores_df: A DataFrame containing metric scores and dates. | |
| :return: A new DataFrame reshaped for plotting purposes. | |
| """ | |
| # Initialize the list to store DataFrames | |
| dfs = [] | |
| # Iterate over the cols and create a new DataFrame for each column | |
| for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: | |
| d = scores_df[col].reset_index(drop=True) | |
| d["task"] = col | |
| dfs.append(d) | |
| # Concatenate all the created DataFrames | |
| concat_df = pd.concat(dfs, ignore_index=True) | |
| # Sort values by 'date' | |
| concat_df.sort_values(by="date", inplace=True) | |
| concat_df.reset_index(drop=True, inplace=True) | |
| return concat_df | |
| def create_metric_plot_obj( | |
| df: pd.DataFrame, metrics: list[str], title: str | |
| ) -> Figure: | |
| """ | |
| Create a Plotly figure object with lines representing different metrics | |
| and horizontal dotted lines representing human baselines. | |
| :param df: The DataFrame containing the metric values, names, and dates. | |
| :param metrics: A list of strings representing the names of the metrics | |
| to be included in the plot. | |
| :param title: A string representing the title of the plot. | |
| :return: A Plotly figure object with lines representing metrics and | |
| horizontal dotted lines representing human baselines. | |
| """ | |
| # Filter the DataFrame based on the specified metrics | |
| df = df[df["task"].isin(metrics)] | |
| # Filter the human baselines based on the specified metrics | |
| filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics if v is not None} | |
| # Create a line figure using plotly express with specified markers and custom data | |
| fig = px.line( | |
| df, | |
| x="date", | |
| y="score", | |
| color="task", | |
| markers=True, | |
| custom_data=["task", "score", "model"], | |
| title=title, | |
| ) | |
| # Update hovertemplate for better hover interaction experience | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [ | |
| "Model Name: %{customdata[2]}", | |
| "Metric Name: %{customdata[0]}", | |
| "Date: %{x}", | |
| "Metric Value: %{y}", | |
| ] | |
| ) | |
| ) | |
| # Update the range of the y-axis | |
| #fig.update_layout(yaxis_range=[0, 100]) | |
| # Create a dictionary to hold the color mapping for each metric | |
| metric_color_mapping = {} | |
| # Map each metric name to its color in the figure | |
| for trace in fig.data: | |
| metric_color_mapping[trace.name] = trace.line.color | |
| # Iterate over filtered human baselines and add horizontal lines to the figure | |
| for metric, value in filtered_human_baselines.items(): | |
| color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found | |
| location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position | |
| # Add horizontal line with matched color and positioned annotation | |
| fig.add_hline( | |
| y=value, | |
| line_dash="dot", | |
| annotation_text=f"{metric} human baseline", | |
| annotation_position=location, | |
| annotation_font_size=10, | |
| annotation_font_color=color, | |
| line_color=color, | |
| ) | |
| return fig | |
| def create_lat_score_mem_plot_obj(leaderboard_df): | |
| copy_df = leaderboard_df.copy() | |
| copy_df = copy_df[~(copy_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"]))] | |
| # plot | |
| SCORE_MEMORY_LATENCY_DATA = [ | |
| AutoEvalColumn.dummy.name, | |
| AutoEvalColumn.average.name, | |
| AutoEvalColumn.params.name, | |
| AutoEvalColumn.architecture.name, | |
| "Evaluation Time (min)" | |
| ] | |
| copy_df["LLM Average Score"] = copy_df[AutoEvalColumn.average.name] | |
| copy_df["Evaluation Time (min)"] = copy_df[AutoEvalColumn.eval_time.name] / 60 | |
| #copy_df["size"] = copy_df[AutoEvalColumn.params.name] | |
| copy_df["size"] = copy_df[AutoEvalColumn.params.name].apply(lambda x: 0.5 if 0 <= x < 0.8 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 0.8 if 0.8 <= x < 2 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 1.5 if 2 <= x < 5 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 2.0 if 5 <= x < 10 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 3.0 if 10 <= x < 35 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 4.0 if 35 <= x < 60 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 6.0 if 60 <= x < 90 else x) | |
| copy_df["size"] = copy_df["size"].apply(lambda x: 8.0 if x >= 90 else x) | |
| fig = px.scatter( | |
| copy_df, | |
| x="Evaluation Time (min)", | |
| y="LLM Average Score", | |
| size="size", | |
| color=AutoEvalColumn.architecture.name, | |
| custom_data=SCORE_MEMORY_LATENCY_DATA, | |
| color_discrete_sequence=px.colors.qualitative.Light24, | |
| log_x=True | |
| ) | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] | |
| ) | |
| ) | |
| fig.update_layout( | |
| title={ | |
| "text": "Eval Time vs. Score vs. #Params", | |
| "y": 0.95, | |
| "x": 0.5, | |
| "xanchor": "center", | |
| "yanchor": "top", | |
| }, | |
| xaxis_title="Time To Evaluate (min)", | |
| yaxis_title="LLM Average Score", | |
| legend_title="LLM Architecture", | |
| width=1200, | |
| height=600, | |
| ) | |
| return fig | |
| def create_top_n_models_comparison_plot(leaderboard_df: pd.DataFrame, top_n: int = 5, size_filter: str = None) -> Figure: | |
| """ | |
| Creates a grouped bar chart comparing the performance of the top N models across all metrics. | |
| :param leaderboard_df: DataFrame containing the leaderboard data. | |
| :param top_n: The number of top models to include in the comparison (default is 5). | |
| :param size_filter: If provided, only include models of this specific size category. | |
| :return: A Plotly figure object representing the comparison plot. | |
| """ | |
| # Ensure BENCHMARK_COLS contains the correct metric column names | |
| metric_cols = BENCHMARK_COLS | |
| # Filter out non-model rows (like baseline or human) and select relevant columns | |
| models_df = leaderboard_df[~leaderboard_df[AutoEvalColumn.dummy.name].isin(["baseline", "human_baseline"])].copy() | |
| # Add size group information to the DataFrame | |
| models_df['size_group'] = models_df[AutoEvalColumn.params.name].apply( | |
| lambda x: next((k for k, v in NUMERIC_INTERVALS.items() if x in v), '?') | |
| ) | |
| # Filter by size category if specified | |
| if size_filter and size_filter != 'All Sizes': | |
| models_df = models_df[models_df['size_group'] == size_filter] | |
| if models_df.empty: | |
| # If no models match the size filter, return an empty figure with a message | |
| fig = px.bar( | |
| x=["No Data"], | |
| y=[0], | |
| title=f"No models found in the {size_filter} size category" | |
| ) | |
| fig.update_layout( | |
| xaxis_title="", | |
| yaxis_title="", | |
| showlegend=False | |
| ) | |
| return fig | |
| # Sort models by average score and select the top N | |
| top_models_df = models_df.nlargest(top_n, AutoEvalColumn.average.name) | |
| # Select only the necessary columns: model name and metric scores | |
| plot_data = top_models_df[[AutoEvalColumn.dummy.name] + metric_cols] | |
| # Melt the DataFrame to long format suitable for plotting | |
| # 'id_vars' specifies the column(s) to keep as identifiers | |
| # 'value_vars' specifies the columns to unpivot | |
| # 'var_name' is the name for the new column containing the original column names (metrics) | |
| # 'value_name' is the name for the new column containing the values (scores) | |
| melted_df = pd.melt( | |
| plot_data, | |
| id_vars=[AutoEvalColumn.dummy.name], | |
| value_vars=metric_cols, | |
| var_name="Metric", | |
| value_name="Score", | |
| ) | |
| # Validate and cap scores to ensure they're within a reasonable range (0-100) | |
| melted_df['Score'] = melted_df['Score'].apply(lambda x: min(max(x, 0), 100)) | |
| # Create the grouped bar chart | |
| fig = px.bar( | |
| melted_df, | |
| x="Metric", | |
| y="Score", | |
| color=AutoEvalColumn.dummy.name, # Group bars by model name | |
| barmode="group", # Display bars side-by-side for each metric | |
| title=f"Top {top_n} Models Comparison Across Metrics", | |
| labels={AutoEvalColumn.dummy.name: "Model"}, # Rename legend title | |
| custom_data=[AutoEvalColumn.dummy.name, "Metric", "Score"], # Data for hover | |
| range_y=[0, 100], # Force y-axis range to be 0-100 | |
| ) | |
| # Update hovertemplate | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [ | |
| "Model: %{customdata[0]}", | |
| "Metric: %{customdata[1]}", | |
| "Score: %{customdata[2]:.2f}", # Format score to 2 decimal places | |
| "<extra></extra>", # Remove the default trace info | |
| ] | |
| ) | |
| ) | |
| # Create title with size filter information if applicable | |
| title_text = f"Top {top_n} Models Comparison Across Metrics" | |
| if size_filter and size_filter != 'All Sizes': | |
| title_text += f" ({size_filter} Models)" | |
| # Calculate appropriate y-axis range based on the data | |
| min_score = melted_df['Score'].min() | |
| max_score = melted_df['Score'].max() | |
| # Set y-axis minimum (start at 0 unless all scores are high) | |
| y_min = 40 if min_score > 50 else 0 | |
| # Set y-axis maximum (ensure there's room for annotations) | |
| y_max = 100 if max_score < 95 else 105 | |
| # Optional: Adjust layout for better readability | |
| fig.update_layout( | |
| title={ | |
| "text": title_text, | |
| "y": 0.95, | |
| "x": 0.5, | |
| "xanchor": "center", | |
| "yanchor": "top", | |
| }, | |
| xaxis_title="Metric", | |
| yaxis_title="Score (%)", | |
| legend_title="Model", | |
| yaxis=dict( | |
| range=[y_min, y_max], # Set y-axis range dynamically | |
| constrain="domain", # Constrain the axis to the domain | |
| constraintoward="top" # Constrain toward the top | |
| ), | |
| width=1600, | |
| height=450, | |
| ) | |
| # Define shape icons for each model | |
| shape_icons = { | |
| 0: "triangle-up", # First model gets triangle | |
| 1: "square", # Second model gets square | |
| 2: "circle", # Third model gets circle | |
| 3: "diamond", # Fourth model gets diamond | |
| 4: "star", # Fifth model gets star | |
| 5: "pentagon", # Sixth model gets pentagon | |
| 6: "hexagon", # Seventh model gets hexagon | |
| 7: "cross", # Eighth model gets cross | |
| 8: "x", # Ninth model gets x | |
| 9: "hourglass", # Tenth model gets hourglass | |
| } | |
| # Get the average score for each model | |
| model_averages = {} | |
| for model in top_models_df[AutoEvalColumn.dummy.name].unique(): | |
| try: | |
| model_averages[model] = top_models_df.loc[top_models_df[AutoEvalColumn.dummy.name] == model, AutoEvalColumn.average.name].values[0] | |
| except (IndexError, KeyError): | |
| # If average score is not available, use None | |
| model_averages[model] = None | |
| # Add shapes to the legend and annotations with icons for each bar | |
| for i, bar in enumerate(fig.data): | |
| model_name = bar.name | |
| model_index = list(top_models_df[AutoEvalColumn.dummy.name].unique()).index(model_name) % len(shape_icons) | |
| icon_shape = shape_icons[model_index] | |
| # Update the name in the legend to include the shape symbol | |
| shape_symbol = get_symbol_for_shape(icon_shape) | |
| fig.data[i].name = f"{shape_symbol} {model_name}" | |
| # For each bar in this trace | |
| for j, (x, y) in enumerate(zip(bar.x, bar.y)): | |
| # Use the actual bar score instead of the average | |
| score_text = f"<b>{y:.1f}</b>" | |
| # Calculate the exact position for the annotation | |
| # Plotly's grouped bar charts position bars at specific offsets | |
| # We need to match these offsets exactly | |
| num_models = len(top_models_df[AutoEvalColumn.dummy.name].unique()) | |
| # The total width allocated for all bars in a group | |
| total_group_width = 0.8 | |
| # Width of each individual bar | |
| bar_width = total_group_width / num_models | |
| # Calculate the offset for this specific bar within its group | |
| # i represents which model in the group (0 is the first model, etc.) | |
| # Center of the group is at x, so we need to adjust from there | |
| offset = (i - (num_models-1)/2) * bar_width | |
| # Add score text directly above its bar | |
| fig.add_annotation( | |
| x=x, | |
| y=y + 2, # Position slightly above the bar | |
| text=score_text, # Display the actual bar score | |
| showarrow=False, | |
| font=dict( | |
| size=10, | |
| color=bar.marker.color # Match the bar color | |
| ), | |
| opacity=0.9, | |
| xshift=offset * 130 # Adjust the multiplier to better center the annotation | |
| ) | |
| # Add the shape icon above the score | |
| fig.add_annotation( | |
| x=x, | |
| y=y - 3, # Position above the score text | |
| text=get_symbol_for_shape(icon_shape), # Convert shape name to symbol | |
| showarrow=False, | |
| font=dict( | |
| size=14, | |
| color="black" # Match the bar color | |
| ), | |
| opacity=0.9, | |
| xshift=offset * 130 # Adjust the multiplier to better center the annotation | |
| ) | |
| return fig | |
| def get_symbol_for_shape(shape_name): | |
| """Convert shape name to a symbol character that can be used in annotations.""" | |
| symbols = { | |
| "triangle-up": "β²", | |
| "square": "β ", | |
| "circle": "β", | |
| "diamond": "β", | |
| "star": "β ", | |
| "pentagon": "β¬", | |
| "hexagon": "β¬’", | |
| "cross": "β", | |
| "x": "β", | |
| "hourglass": "β§" | |
| } | |
| return symbols.get(shape_name, "β") # Default to circle if shape not found | |