Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
48719fa
1
Parent(s):
b2fe6a1
fix portuguese itens in collections
Browse files- app.py +2 -2
- src/tools/collections.py +12 -5
app.py
CHANGED
|
@@ -106,7 +106,7 @@ def init_space(full_init: bool = True):
|
|
| 106 |
benchmark_cols=BENCHMARK_COLS,
|
| 107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
| 108 |
)
|
| 109 |
-
update_collections(original_df.copy())
|
| 110 |
leaderboard_df = original_df.copy()
|
| 111 |
|
| 112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
|
@@ -556,7 +556,7 @@ def update_dynamic_files_wrapper():
|
|
| 556 |
scheduler = BackgroundScheduler(daemon=True)
|
| 557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
| 558 |
scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
|
| 559 |
-
|
| 560 |
scheduler.start()
|
| 561 |
|
| 562 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 106 |
benchmark_cols=BENCHMARK_COLS,
|
| 107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
| 108 |
)
|
| 109 |
+
#update_collections(original_df.copy())
|
| 110 |
leaderboard_df = original_df.copy()
|
| 111 |
|
| 112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
|
|
|
| 556 |
scheduler = BackgroundScheduler(daemon=True)
|
| 557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
| 558 |
scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
|
| 559 |
+
scheduler.add_job(update_collections, "interval", args=(original_df.copy(),), seconds=3600, next_run_time=datetime.now() + timedelta(minutes=1))
|
| 560 |
scheduler.start()
|
| 561 |
|
| 562 |
demo.queue(default_concurrency_limit=40).launch()
|
src/tools/collections.py
CHANGED
|
@@ -33,6 +33,7 @@ def update_collections(df: DataFrame):
|
|
| 33 |
|
| 34 |
cur_best_models = []
|
| 35 |
cur_best_scores = []
|
|
|
|
| 36 |
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
| 37 |
|
| 38 |
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
|
@@ -50,10 +51,12 @@ def update_collections(df: DataFrame):
|
|
| 50 |
#df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
|
| 51 |
|
| 52 |
ix = 0
|
| 53 |
-
|
| 54 |
-
interval_itens_languages = []
|
| 55 |
-
interval_itens = []
|
| 56 |
for size in intervals:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
| 58 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 59 |
size_df = df.loc[mask]
|
|
@@ -95,8 +98,10 @@ def update_collections(df: DataFrame):
|
|
| 95 |
ix += 1
|
| 96 |
item_object_id = collection.items[-1].item_object_id
|
| 97 |
cur_best_models.append(hf_path)
|
|
|
|
| 98 |
interval_scores.append(float(score))
|
| 99 |
interval_itens_languages.append(language)
|
|
|
|
| 100 |
interval_itens.append(item_object_id)
|
| 101 |
scores_per_type[model_type] = float(score)
|
| 102 |
break
|
|
@@ -137,8 +142,10 @@ def update_collections(df: DataFrame):
|
|
| 137 |
ix += 1
|
| 138 |
item_object_id = collection.items[-1].item_object_id
|
| 139 |
cur_best_models.append(hf_path)
|
|
|
|
| 140 |
interval_scores.append(float(score))
|
| 141 |
interval_itens_languages.append(language)
|
|
|
|
| 142 |
interval_itens.append(item_object_id)
|
| 143 |
scores_per_type[model_type] = float(score)
|
| 144 |
break
|
|
@@ -148,14 +155,14 @@ def update_collections(df: DataFrame):
|
|
| 148 |
# fix order:
|
| 149 |
starting_idx = len(cur_best_models)
|
| 150 |
k = 0
|
| 151 |
-
for i in np.argsort(
|
| 152 |
if i == k:
|
| 153 |
continue
|
| 154 |
else:
|
| 155 |
try:
|
| 156 |
#print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
|
| 157 |
update_collection_item(
|
| 158 |
-
collection_slug=PATH_TO_COLLECTION, item_object_id=
|
| 159 |
)
|
| 160 |
except:
|
| 161 |
traceback.print_exc()
|
|
|
|
| 33 |
|
| 34 |
cur_best_models = []
|
| 35 |
cur_best_scores = []
|
| 36 |
+
cur_itens = []
|
| 37 |
scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
|
| 38 |
|
| 39 |
types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
|
|
|
|
| 51 |
#df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
|
| 52 |
|
| 53 |
ix = 0
|
| 54 |
+
|
|
|
|
|
|
|
| 55 |
for size in intervals:
|
| 56 |
+
interval_scores = []
|
| 57 |
+
interval_itens_languages = []
|
| 58 |
+
interval_itens = []
|
| 59 |
+
|
| 60 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
| 61 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 62 |
size_df = df.loc[mask]
|
|
|
|
| 98 |
ix += 1
|
| 99 |
item_object_id = collection.items[-1].item_object_id
|
| 100 |
cur_best_models.append(hf_path)
|
| 101 |
+
cur_best_scores.append(float(score))
|
| 102 |
interval_scores.append(float(score))
|
| 103 |
interval_itens_languages.append(language)
|
| 104 |
+
cur_itens.append(item_object_id)
|
| 105 |
interval_itens.append(item_object_id)
|
| 106 |
scores_per_type[model_type] = float(score)
|
| 107 |
break
|
|
|
|
| 142 |
ix += 1
|
| 143 |
item_object_id = collection.items[-1].item_object_id
|
| 144 |
cur_best_models.append(hf_path)
|
| 145 |
+
cur_best_scores.append(float(score))
|
| 146 |
interval_scores.append(float(score))
|
| 147 |
interval_itens_languages.append(language)
|
| 148 |
+
cur_itens.append(item_object_id)
|
| 149 |
interval_itens.append(item_object_id)
|
| 150 |
scores_per_type[model_type] = float(score)
|
| 151 |
break
|
|
|
|
| 155 |
# fix order:
|
| 156 |
starting_idx = len(cur_best_models)
|
| 157 |
k = 0
|
| 158 |
+
for i in np.argsort(cur_best_scores):
|
| 159 |
if i == k:
|
| 160 |
continue
|
| 161 |
else:
|
| 162 |
try:
|
| 163 |
#print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
|
| 164 |
update_collection_item(
|
| 165 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=cur_itens[i], position=starting_idx+k
|
| 166 |
)
|
| 167 |
except:
|
| 168 |
traceback.print_exc()
|