Spaces:
Sleeping
Sleeping
jocko
commited on
Commit
Β·
0a89a37
1
Parent(s):
4a259f2
copy updates of mult modal
Browse files- README.md +3 -4
- src/streamlit_app.py +103 -140
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: Dr Q
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: red
|
|
@@ -8,12 +8,11 @@ app_port: 8501
|
|
| 8 |
tags:
|
| 9 |
- streamlit
|
| 10 |
pinned: false
|
| 11 |
-
short_description:
|
| 12 |
---
|
| 13 |
-
|
| 14 |
# Welcome to Streamlit!
|
| 15 |
|
| 16 |
Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
|
| 17 |
|
| 18 |
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 19 |
-
forums](https://discuss.streamlit.io).
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Dr Q
|
| 3 |
emoji: π
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: red
|
|
|
|
| 8 |
tags:
|
| 9 |
- streamlit
|
| 10 |
pinned: false
|
| 11 |
+
short_description: Multimodal medical chatbot
|
| 12 |
---
|
|
|
|
| 13 |
# Welcome to Streamlit!
|
| 14 |
|
| 15 |
Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
|
| 16 |
|
| 17 |
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 18 |
+
forums](https://discuss.streamlit.io).
|
src/streamlit_app.py
CHANGED
|
@@ -1,164 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
|
| 5 |
-
os.environ["
|
| 6 |
-
os.environ["
|
| 7 |
-
os.environ["
|
| 8 |
-
os.environ["
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
import
|
| 20 |
import torch
|
| 21 |
-
import openai
|
| 22 |
-
import os
|
| 23 |
from sentence_transformers import SentenceTransformer, util
|
| 24 |
-
import
|
| 25 |
-
from
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Set the API key
|
| 29 |
-
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 30 |
-
# openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 31 |
-
# REMEDI_PATH = "ReMeDi-base.json"
|
| 32 |
-
BASE_DIR = Path(__file__).parent
|
| 33 |
-
REMEDI_PATH = BASE_DIR / "ReMeDi-base.json"
|
| 34 |
-
|
| 35 |
-
# Check if file exists
|
| 36 |
-
if not REMEDI_PATH.exists():
|
| 37 |
-
raise FileNotFoundError(f"β File not found: {REMEDI_PATH}")
|
| 38 |
-
|
| 39 |
-
# Load the file
|
| 40 |
-
with open(REMEDI_PATH, "r", encoding="utf-8") as f:
|
| 41 |
-
data = json.load(f)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# === LOAD MODEL ===
|
| 45 |
-
@st.cache_resource
|
| 46 |
-
def load_model():
|
| 47 |
-
return SentenceTransformer("all-MiniLM-L6-v2")
|
| 48 |
-
# return model
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
@st.cache_resource
|
| 52 |
-
def load_data():
|
| 53 |
-
with open(REMEDI_PATH, "r", encoding="utf-8") as f:
|
| 54 |
-
data = json.load(f)
|
| 55 |
-
dialogue_pairs = []
|
| 56 |
-
for conversation in data:
|
| 57 |
-
turns = conversation["information"]
|
| 58 |
-
for i in range(len(turns) - 1):
|
| 59 |
-
if turns[i]["role"] == "patient" and turns[i + 1]["role"] == "doctor":
|
| 60 |
-
dialogue_pairs.append({
|
| 61 |
-
"patient": turns[i]["sentence"],
|
| 62 |
-
"doctor": turns[i + 1]["sentence"]
|
| 63 |
-
})
|
| 64 |
-
return dialogue_pairs
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
@st.cache_data
|
| 68 |
-
def build_embeddings(dialogue_pairs, _model):
|
| 69 |
-
patient_sentences = [pair["patient"] for pair in dialogue_pairs]
|
| 70 |
-
embeddings = _model.encode(patient_sentences, convert_to_tensor=True)
|
| 71 |
-
return embeddings
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# === TRANSLATE USING GPT ===
|
| 75 |
-
def translate_to_english(chinese_text):
|
| 76 |
-
prompt = f"Translate the following Chinese medical response to English:\n\n{chinese_text}"
|
| 77 |
-
try:
|
| 78 |
-
response = client.chat.completions.create(
|
| 79 |
-
model="gpt-4",
|
| 80 |
-
messages=[{"role": "user", "content": prompt}],
|
| 81 |
-
temperature=0.2
|
| 82 |
-
)
|
| 83 |
-
return response.choices[0].message.content
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
return f"Translation failed: {str(e)}"
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
model="gpt-4", # or "gpt-3.5-turbo" to save credits
|
| 95 |
-
messages=[{"role": "user", "content": prompt}],
|
| 96 |
-
temperature=0.5
|
| 97 |
-
)
|
| 98 |
-
return response.choices[0].message.content
|
| 99 |
-
except Exception as e:
|
| 100 |
-
return f"GPT response failed: {str(e)}"
|
| 101 |
|
| 102 |
|
| 103 |
-
# === CHATBOT FUNCTION ===
|
| 104 |
-
def chatbot_response(user_input, _model, dialogue_pairs, patient_embeddings, top_k=1):
|
| 105 |
-
user_embedding = _model.encode(user_input, convert_to_tensor=True)
|
| 106 |
-
similarities = util.cos_sim(user_embedding, patient_embeddings)[0]
|
| 107 |
-
top_score, top_idx = torch.topk(similarities, k=1)
|
| 108 |
-
top_score = top_score.item()
|
| 109 |
-
top_idx = torch.topk(similarities, k=top_k).indices[0].item()
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
"matched_question": match["patient"],
|
| 116 |
-
"original_response": match["doctor"],
|
| 117 |
-
"translated_response": translated
|
| 118 |
-
# "similarity_score": top_score
|
| 119 |
-
}
|
| 120 |
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
st.title("π©Ί Dr_Q_bot - Medical Chatbot")
|
| 125 |
-
st.write("Ask about a symptom and get an example doctor response (translated from Chinese).")
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
dialogue_pairs = load_data()
|
| 130 |
-
patient_embeddings = build_embeddings(dialogue_pairs, model)
|
| 131 |
|
| 132 |
-
#
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
result = chatbot_response(user_input, model, dialogue_pairs, patient_embeddings)
|
| 138 |
-
gpt_response = gpt_direct_response(user_input)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
st.
|
| 154 |
-
# else:
|
| 155 |
-
# st.warning("No close match found in dataset. Using GPT response only.")
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
|
| 163 |
-
st.warning(
|
| 164 |
-
"This chatbot uses real dialogue data for research and educational use only. Not a substitute for professional medical advice.")
|
|
|
|
| 1 |
+
# ================================
|
| 2 |
+
# β
Cache-Safe Multimodal App
|
| 3 |
+
# ================================
|
| 4 |
+
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
# ====== Force all cache dirs to /tmp (writable in most environments) ======
|
| 8 |
+
CACHE_BASE = "/tmp/cache"
|
| 9 |
+
os.environ["HF_HOME"] = f"{CACHE_BASE}/hf_home"
|
| 10 |
+
os.environ["TRANSFORMERS_CACHE"] = f"{CACHE_BASE}/transformers"
|
| 11 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = f"{CACHE_BASE}/sentence_transformers"
|
| 12 |
+
os.environ["HF_DATASETS_CACHE"] = f"{CACHE_BASE}/hf_datasets"
|
| 13 |
+
os.environ["TORCH_HOME"] = f"{CACHE_BASE}/torch"
|
| 14 |
+
os.environ["STREAMLIT_CACHE_DIR"] = f"{CACHE_BASE}/streamlit_cache"
|
| 15 |
+
os.environ["STREAMLIT_STATIC_DIR"] = f"{CACHE_BASE}/streamlit_static"
|
| 16 |
+
|
| 17 |
+
# Create the directories before imports
|
| 18 |
+
for path in os.environ.values():
|
| 19 |
+
if path.startswith(CACHE_BASE):
|
| 20 |
+
os.makedirs(path, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
# ====== Imports ======
|
| 23 |
+
import streamlit as st
|
| 24 |
import torch
|
|
|
|
|
|
|
| 25 |
from sentence_transformers import SentenceTransformer, util
|
| 26 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 27 |
+
from datasets import load_dataset, get_dataset_split_names
|
| 28 |
+
from PIL import Image
|
| 29 |
+
import openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# ========== π API Key ==========
|
| 32 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 33 |
|
| 34 |
+
# ========== π₯ Load Models ==========
|
| 35 |
+
@st.cache_resource(show_spinner=False)
|
| 36 |
+
def load_models():
|
| 37 |
+
clip_model = CLIPModel.from_pretrained(
|
| 38 |
+
"openai/clip-vit-base-patch32",
|
| 39 |
+
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 40 |
+
)
|
| 41 |
+
clip_processor = CLIPProcessor.from_pretrained(
|
| 42 |
+
"openai/clip-vit-base-patch32",
|
| 43 |
+
cache_dir=os.environ["TRANSFORMERS_CACHE"]
|
| 44 |
+
)
|
| 45 |
+
text_model = SentenceTransformer(
|
| 46 |
+
"all-MiniLM-L6-v2",
|
| 47 |
+
cache_folder=os.environ["SENTENCE_TRANSFORMERS_HOME"]
|
| 48 |
+
)
|
| 49 |
+
return clip_model, clip_processor, text_model
|
| 50 |
|
| 51 |
+
clip_model, clip_processor, text_model = load_models()
|
| 52 |
+
|
| 53 |
+
# ========== π₯ Load Dataset ==========
|
| 54 |
+
@st.cache_resource(show_spinner=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
def load_medical_data():
|
| 59 |
+
available_splits = get_dataset_split_names("univanxx/3mdbench")
|
| 60 |
+
split_to_use = "train" if "train" in available_splits else available_splits[0]
|
| 61 |
+
dataset = load_dataset(
|
| 62 |
+
"univanxx/3mdbench",
|
| 63 |
+
split=split_to_use,
|
| 64 |
+
cache_dir=os.environ["HF_DATASETS_CACHE"]
|
| 65 |
+
)
|
| 66 |
+
return dataset
|
| 67 |
|
| 68 |
+
data = load_medical_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Temporary debug display
|
| 71 |
+
#st.write("Dataset columns:", data.features.keys())
|
| 72 |
|
| 73 |
+
# After seeing the real column name, let's say it's "text" instead of "description":
|
| 74 |
+
text_field = "text" if "text" in data.features else list(data.features.keys())[0]
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Then use dynamic access:
|
| 77 |
+
#text_embeddings = embed_texts(data[text_field])
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# ========== π§ Embedding Function ==========
|
| 80 |
+
@st.cache_data(show_spinner=False)
|
| 81 |
+
def embed_texts(_texts):
|
| 82 |
+
return text_model.encode(_texts, convert_to_tensor=True)
|
| 83 |
|
| 84 |
+
# Pick which text column to use
|
| 85 |
+
TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# ========== π§ββοΈ App UI ==========
|
| 88 |
+
st.title("π©Ί Multimodal Medical Chatbot")
|
| 89 |
|
| 90 |
+
query = st.text_input("Enter your medical question or symptom description:")
|
| 91 |
|
| 92 |
+
if query:
|
| 93 |
+
with st.spinner("Searching medical cases..."):
|
| 94 |
+
text_embeddings = embed_texts(data[TEXT_COLUMN])
|
| 95 |
+
query_embedding = embed_texts([query])[0]
|
| 96 |
|
| 97 |
+
# Compute similarity
|
| 98 |
+
cos_scores = util.pytorch_cos_sim(query_embedding, text_embeddings)[0]
|
| 99 |
+
top_result = torch.topk(cos_scores, k=1)
|
| 100 |
+
idx = top_result.indices[0].item()
|
| 101 |
+
selected = data[idx]
|
| 102 |
|
| 103 |
+
# Show Image
|
| 104 |
+
st.image(selected['image'], caption="Most relevant medical image", use_container_width=True)
|
|
|
|
|
|
|
| 105 |
|
| 106 |
+
# Show Text
|
| 107 |
+
st.markdown(f"**Case Description:** {selected[TEXT_COLUMN]}")
|
| 108 |
+
|
| 109 |
+
# GPT Explanation
|
| 110 |
+
if openai.api_key:
|
| 111 |
+
prompt = f"Explain this case in plain English: {selected[TEXT_COLUMN]}"
|
| 112 |
+
from openai import OpenAI
|
| 113 |
+
client = OpenAI(api_key=openai.api_key)
|
| 114 |
+
|
| 115 |
+
response = client.chat.completions.create(
|
| 116 |
+
model="gpt-4o", # or "gpt-4" if you need the older GPT-4
|
| 117 |
+
messages=[{"role": "user", "content": prompt}],
|
| 118 |
+
temperature=0.5,
|
| 119 |
+
max_tokens=150
|
| 120 |
+
)
|
| 121 |
+
explanation = response.choices[0].message.content
|
| 122 |
|
| 123 |
+
st.markdown(f"### π€ Explanation by GPT:\n{explanation}")
|
| 124 |
+
else:
|
| 125 |
+
st.warning("OpenAI API key not found. Please set OPENAI_API_KEY as a secret environment variable.")
|
| 126 |
|
| 127 |
+
st.caption("This chatbot is for educational purposes only and does not provide medical advice.")
|
|
|
|
|
|