Spaces:
Sleeping
Sleeping
jocko
commited on
Commit
·
61e5bfd
1
Parent(s):
dc78eca
merge code
Browse files- src/streamlit_app.py +18 -3
src/streamlit_app.py
CHANGED
|
@@ -77,14 +77,29 @@ client = OpenAI(api_key=openai.api_key)
|
|
| 77 |
# After seeing the real column name, let's say it's "text" instead of "description":
|
| 78 |
text_field = "text" if "text" in data.features else list(data.features.keys())[0]
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# Then use dynamic access:
|
| 81 |
#text_embeddings = embed_texts(data[text_field])
|
| 82 |
|
| 83 |
# ========== 🧠 Embedding Function ==========
|
| 84 |
@st.cache_data(show_spinner=False)
|
| 85 |
-
def
|
| 86 |
return text_model.encode(_texts, convert_to_tensor=True)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
# Pick which text column to use
|
| 89 |
TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
|
| 90 |
|
|
@@ -112,8 +127,8 @@ def get_similar_prompt(query_embedding, text_embeddings):
|
|
| 112 |
|
| 113 |
if query:
|
| 114 |
with st.spinner("Searching medical cases..."):
|
| 115 |
-
text_embeddings =
|
| 116 |
-
query_embedding =
|
| 117 |
|
| 118 |
# Compute similarity
|
| 119 |
selected = get_similar_prompt(query_embedding, text_embeddings)
|
|
|
|
| 77 |
# After seeing the real column name, let's say it's "text" instead of "description":
|
| 78 |
text_field = "text" if "text" in data.features else list(data.features.keys())[0]
|
| 79 |
|
| 80 |
+
|
| 81 |
+
@st.cache_data(show_spinner=False)
|
| 82 |
+
def prepare_combined_texts(_dataset):
|
| 83 |
+
combined = []
|
| 84 |
+
for gc, c in zip(_dataset["general_complaint"], _dataset["complaints"]):
|
| 85 |
+
gc_str = gc if gc else ""
|
| 86 |
+
c_str = c if c else ""
|
| 87 |
+
combined.append(f"General complaint: {gc_str}. Additional details: {c_str}")
|
| 88 |
+
return combined
|
| 89 |
+
|
| 90 |
+
combined_texts = prepare_combined_texts(data)
|
| 91 |
+
|
| 92 |
# Then use dynamic access:
|
| 93 |
#text_embeddings = embed_texts(data[text_field])
|
| 94 |
|
| 95 |
# ========== 🧠 Embedding Function ==========
|
| 96 |
@st.cache_data(show_spinner=False)
|
| 97 |
+
def embed_dataset_texts(_texts):
|
| 98 |
return text_model.encode(_texts, convert_to_tensor=True)
|
| 99 |
|
| 100 |
+
def embed_query_text(query):
|
| 101 |
+
return text_model.encode([query], convert_to_tensor=True)[0]
|
| 102 |
+
|
| 103 |
# Pick which text column to use
|
| 104 |
TEXT_COLUMN = "complaints" # or "general_complaint", depending on your needs
|
| 105 |
|
|
|
|
| 127 |
|
| 128 |
if query:
|
| 129 |
with st.spinner("Searching medical cases..."):
|
| 130 |
+
text_embeddings = embed_dataset_texts(combined_texts) # cached
|
| 131 |
+
query_embedding = embed_query_text(query) # recalculated each time
|
| 132 |
|
| 133 |
# Compute similarity
|
| 134 |
selected = get_similar_prompt(query_embedding, text_embeddings)
|