Spaces:
Sleeping
Sleeping
jocko
commited on
Commit
Β·
e146235
1
Parent(s):
fd7833c
initial commit
Browse files- requirements.txt +6 -1
- src/requirements.txt +4 -0
- src/runtime.txt +1 -0
- src/streamlit_app.py +143 -38
requirements.txt
CHANGED
|
@@ -1,3 +1,8 @@
|
|
| 1 |
altair
|
| 2 |
pandas
|
| 3 |
-
streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
altair
|
| 2 |
pandas
|
| 3 |
+
streamlit
|
| 4 |
+
torch
|
| 5 |
+
transformers
|
| 6 |
+
sentence-transformers
|
| 7 |
+
datasets
|
| 8 |
+
openai
|
src/requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
openai>=1.2.0
|
| 3 |
+
sentence-transformers
|
| 4 |
+
torch
|
src/runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.10.12
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,145 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# β
Set all relevant cache directories to a writable location
|
| 4 |
+
os.environ["HF_HOME"] = "/tmp/cache"
|
| 5 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/cache/transformers"
|
| 6 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/cache/sentence_transformers"
|
| 7 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp/cache/hf_datasets"
|
| 8 |
+
os.environ["TORCH_HOME"] = "/tmp/cache/torch"
|
| 9 |
+
|
| 10 |
+
# β
Create the directories if they don't exist
|
| 11 |
+
for path in [
|
| 12 |
+
"/tmp/cache",
|
| 13 |
+
"/tmp/cache/transformers",
|
| 14 |
+
"/tmp/cache/sentence_transformers",
|
| 15 |
+
"/tmp/cache/hf_datasets",
|
| 16 |
+
"/tmp/cache/torch"
|
| 17 |
+
]:
|
| 18 |
+
os.makedirs(path, exist_ok=True)
|
| 19 |
+
import json
|
| 20 |
+
import torch
|
| 21 |
+
import openai
|
| 22 |
+
import os
|
| 23 |
+
from sentence_transformers import SentenceTransformer, util
|
| 24 |
import streamlit as st
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
|
| 27 |
+
# === CONFIG ===
|
| 28 |
+
# Set the API key
|
| 29 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 30 |
+
#openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 31 |
+
# REMEDI_PATH = "ReMeDi-base.json"
|
| 32 |
+
BASE_DIR = Path(__file__).parent
|
| 33 |
+
REMEDI_PATH = BASE_DIR / "ReMeDi-base.json"
|
| 34 |
+
|
| 35 |
+
# Check if file exists
|
| 36 |
+
if not REMEDI_PATH.exists():
|
| 37 |
+
raise FileNotFoundError(f"β File not found: {REMEDI_PATH}")
|
| 38 |
+
|
| 39 |
+
# Load the file
|
| 40 |
+
with open(REMEDI_PATH, "r", encoding="utf-8") as f:
|
| 41 |
+
data = json.load(f)
|
| 42 |
+
|
| 43 |
+
# === LOAD MODEL ===
|
| 44 |
+
@st.cache_resource
|
| 45 |
+
def load_model():
|
| 46 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
| 47 |
+
#return model
|
| 48 |
+
|
| 49 |
+
@st.cache_resource
|
| 50 |
+
def load_data():
|
| 51 |
+
with open(REMEDI_PATH, "r", encoding="utf-8") as f:
|
| 52 |
+
data = json.load(f)
|
| 53 |
+
dialogue_pairs = []
|
| 54 |
+
for conversation in data:
|
| 55 |
+
turns = conversation["information"]
|
| 56 |
+
for i in range(len(turns)-1):
|
| 57 |
+
if turns[i]["role"] == "patient" and turns[i+1]["role"] == "doctor":
|
| 58 |
+
dialogue_pairs.append({
|
| 59 |
+
"patient": turns[i]["sentence"],
|
| 60 |
+
"doctor": turns[i+1]["sentence"]
|
| 61 |
+
})
|
| 62 |
+
return dialogue_pairs
|
| 63 |
+
|
| 64 |
+
@st.cache_data
|
| 65 |
+
def build_embeddings(dialogue_pairs, _model):
|
| 66 |
+
patient_sentences = [pair["patient"] for pair in dialogue_pairs]
|
| 67 |
+
embeddings = _model.encode(patient_sentences, convert_to_tensor=True)
|
| 68 |
+
return embeddings
|
| 69 |
+
|
| 70 |
+
# === TRANSLATE USING GPT ===
|
| 71 |
+
def translate_to_english(chinese_text):
|
| 72 |
+
prompt = f"Translate the following Chinese medical response to English:\n\n{chinese_text}"
|
| 73 |
+
try:
|
| 74 |
+
response = client.chat.completions.create(
|
| 75 |
+
model="gpt-4",
|
| 76 |
+
messages=[{"role": "user", "content": prompt}],
|
| 77 |
+
temperature=0.2
|
| 78 |
+
)
|
| 79 |
+
return response.choices[0].message.content
|
| 80 |
+
|
| 81 |
+
#return response.choices[0].message["content"].strip()
|
| 82 |
+
except Exception as e:
|
| 83 |
+
return f"Translation failed: {str(e)}"
|
| 84 |
+
|
| 85 |
+
def gpt_direct_response(user_input):
|
| 86 |
+
prompt = f"You are a knowledgeable and compassionate medical assistant. Answer the following patient question clearly and concisely:\n\n{user_input}"
|
| 87 |
+
try:
|
| 88 |
+
response = client.chat.completions.create(
|
| 89 |
+
model="gpt-4", # or "gpt-3.5-turbo" to save credits
|
| 90 |
+
messages=[{"role": "user", "content": prompt}],
|
| 91 |
+
temperature=0.5
|
| 92 |
+
)
|
| 93 |
+
return response.choices[0].message.content
|
| 94 |
+
except Exception as e:
|
| 95 |
+
return f"GPT response failed: {str(e)}"
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# === CHATBOT FUNCTION ===
|
| 99 |
+
def chatbot_response(user_input, _model, dialogue_pairs, patient_embeddings, top_k=1):
|
| 100 |
+
user_embedding = _model.encode(user_input, convert_to_tensor=True)
|
| 101 |
+
similarities = util.cos_sim(user_embedding, patient_embeddings)[0]
|
| 102 |
+
top_idx = torch.topk(similarities, k=top_k).indices[0].item()
|
| 103 |
+
|
| 104 |
+
match = dialogue_pairs[top_idx]
|
| 105 |
+
translated = translate_to_english(match["doctor"])
|
| 106 |
+
|
| 107 |
+
return {
|
| 108 |
+
"matched_question": match["patient"],
|
| 109 |
+
"original_response": match["doctor"],
|
| 110 |
+
"translated_response": translated
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
# === MAIN APP ===
|
| 114 |
+
st.set_page_config(page_title="Dr_Q_bot", layout="centered")
|
| 115 |
+
st.title("π©Ί Dr_Q_bot - Medical Chatbot")
|
| 116 |
+
st.write("Ask about a symptom and get an example doctor response (translated from Chinese).")
|
| 117 |
+
|
| 118 |
+
# Load resources
|
| 119 |
+
model = load_model()
|
| 120 |
+
dialogue_pairs = load_data()
|
| 121 |
+
patient_embeddings = build_embeddings(dialogue_pairs, model)
|
| 122 |
+
|
| 123 |
+
# Chat UI
|
| 124 |
+
user_input = st.text_input("Describe your symptom:")
|
| 125 |
+
|
| 126 |
+
if st.button("Submit") and user_input:
|
| 127 |
+
with st.spinner("Thinking..."):
|
| 128 |
+
result = chatbot_response(user_input, model, dialogue_pairs, patient_embeddings)
|
| 129 |
+
gpt_response = gpt_direct_response(user_input)
|
| 130 |
+
|
| 131 |
+
st.markdown("### π§ββοΈ Closest Patient Question")
|
| 132 |
+
st.write(result["matched_question"])
|
| 133 |
+
|
| 134 |
+
st.markdown("### π¨π³ Original Doctor Response (Chinese)")
|
| 135 |
+
st.write(result["original_response"])
|
| 136 |
+
|
| 137 |
+
st.markdown("### π Translated Doctor Response (English)")
|
| 138 |
+
st.success(result["translated_response"])
|
| 139 |
+
|
| 140 |
+
st.markdown("### π¬ GPT Doctor Response (AI-generated)")
|
| 141 |
+
st.info(gpt_response)
|
| 142 |
+
|
| 143 |
|
| 144 |
+
st.markdown("---")
|
| 145 |
+
st.warning("This chatbot uses real dialogue data for research and educational use only. Not a substitute for professional medical advice.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|