Spaces:
Runtime error
Runtime error
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import spaces | |
| from PIL import Image | |
| import torch | |
| import re | |
| import numpy as np | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| fl_model = AutoModelForCausalLM.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True).eval().to("cpu").eval() | |
| fl_processor = AutoProcessor.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True) | |
| def modify_caption(caption: str) -> str: | |
| special_patterns = [ | |
| (r'the image is ', ''), | |
| (r'the image captures ', ''), | |
| (r'the image showcases ', ''), | |
| (r'the image shows ', ''), | |
| (r'the image ', ''), | |
| ] | |
| for pattern, replacement in special_patterns: | |
| caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE) | |
| caption = caption.replace('\n', '').replace('\r', '') | |
| caption = re.sub(r'(?<=[.,?!])(?=[^\s])', r' ', caption) | |
| caption = ' '.join(caption.strip().splitlines()) | |
| return caption | |
| def process_image(image): | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| elif isinstance(image, str): | |
| image = Image.open(image) | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| prompt = "<MORE_DETAILED_CAPTION>" | |
| fl_model.to(device) | |
| inputs = fl_processor(text=prompt, images=image, return_tensors="pt").to(device) | |
| generated_ids = fl_model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| num_beams=3, | |
| do_sample=True | |
| ) | |
| fl_model.to("cpu") | |
| generated_text = fl_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = fl_processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) | |
| return modify_caption(parsed_answer["<MORE_DETAILED_CAPTION>"]) | |
| def predict_tags_fl2_cog(image: Image.Image, input_tags: str, algo: list[str]): | |
| def to_list(s): | |
| return [x.strip() for x in s.split(",") if not s == ""] | |
| def list_uniq(l): | |
| return sorted(set(l), key=l.index) | |
| if not "Use CogFlorence-2.1-Large" in algo: | |
| return input_tags | |
| tag_list = list_uniq(to_list(input_tags) + to_list(process_image(image) + ", ")) | |
| tag_list.remove("") | |
| return ", ".join(tag_list) | |