Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +194 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,196 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
from scipy import stats
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
# Metadata
|
| 9 |
+
AUTHOR = "Eduardo Nacimiento GarcΓa"
|
| 10 |
+
EMAIL = "enacimie@ull.edu.es"
|
| 11 |
+
LICENSE = "Apache 2.0"
|
| 12 |
+
|
| 13 |
+
# Page config
|
| 14 |
+
st.set_page_config(
|
| 15 |
+
page_title="SimpleStats",
|
| 16 |
+
page_icon="π",
|
| 17 |
+
layout="wide",
|
| 18 |
+
initial_sidebar_state="expanded",
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Title and credits
|
| 22 |
+
st.title("π SimpleStats")
|
| 23 |
+
st.markdown(f"**Author:** {AUTHOR} | **Email:** {EMAIL} | **License:** {LICENSE}")
|
| 24 |
+
|
| 25 |
+
st.write("""
|
| 26 |
+
Upload a CSV file or try the built-in demo dataset to perform statistical analysis: summary, charts, hypothesis tests, and more.
|
| 27 |
+
""")
|
| 28 |
+
|
| 29 |
+
# Generate demo dataset
|
| 30 |
+
@st.cache_data
|
| 31 |
+
def create_demo_data():
|
| 32 |
+
np.random.seed(42)
|
| 33 |
+
n = 200
|
| 34 |
+
data = {
|
| 35 |
+
"Age": np.random.normal(35, 12, n).astype(int),
|
| 36 |
+
"Income": np.random.normal(45000, 15000, n),
|
| 37 |
+
"Satisfaction": np.random.randint(1, 11, n), # scale 1-10
|
| 38 |
+
"Group": np.random.choice(["A", "B", "C"], n),
|
| 39 |
+
"Gender": np.random.choice(["M", "F"], n, p=[0.6, 0.4]),
|
| 40 |
+
"Purchase": np.random.choice([0, 1], n, p=[0.7, 0.3])
|
| 41 |
+
}
|
| 42 |
+
df = pd.DataFrame(data)
|
| 43 |
+
# Introduce some nulls for demo
|
| 44 |
+
df.loc[np.random.choice(df.index, 10), "Income"] = np.nan
|
| 45 |
+
df.loc[np.random.choice(df.index, 5), "Age"] = np.nan
|
| 46 |
+
return df
|
| 47 |
+
|
| 48 |
+
demo_df = create_demo_data()
|
| 49 |
+
|
| 50 |
+
# Button to load demo data
|
| 51 |
+
if st.button("π§ͺ Load Demo Dataset"):
|
| 52 |
+
st.session_state['uploaded_file'] = demo_df.to_csv(index=False).encode('utf-8')
|
| 53 |
+
st.session_state['file_name'] = "demo_data.csv"
|
| 54 |
+
st.success("β
Demo dataset loaded. Explore the features!")
|
| 55 |
+
|
| 56 |
+
# File uploader
|
| 57 |
+
uploaded_file = st.file_uploader("π Upload your CSV file", type=["csv"])
|
| 58 |
+
|
| 59 |
+
# Determine data source
|
| 60 |
+
if 'uploaded_file' in st.session_state and not uploaded_file:
|
| 61 |
+
# Use demo if no file uploaded
|
| 62 |
+
csv_bytes = st.session_state['uploaded_file']
|
| 63 |
+
file_name = st.session_state['file_name']
|
| 64 |
+
df = pd.read_csv(io.BytesIO(csv_bytes))
|
| 65 |
+
st.info(f"Using demo dataset: `{file_name}`")
|
| 66 |
+
elif uploaded_file is not None:
|
| 67 |
+
df = pd.read_csv(uploaded_file)
|
| 68 |
+
st.success("β
File uploaded successfully.")
|
| 69 |
+
else:
|
| 70 |
+
df = None
|
| 71 |
+
|
| 72 |
+
if df is not None:
|
| 73 |
+
# Show data preview
|
| 74 |
+
with st.expander("π Data Preview (first 10 rows)"):
|
| 75 |
+
st.dataframe(df.head(10))
|
| 76 |
+
|
| 77 |
+
# Basic info
|
| 78 |
+
st.subheader("π Dataset Information")
|
| 79 |
+
col1, col2, col3 = st.columns(3)
|
| 80 |
+
col1.metric("Rows", df.shape[0])
|
| 81 |
+
col2.metric("Columns", df.shape[1])
|
| 82 |
+
col3.metric("Missing Values", df.isnull().sum().sum())
|
| 83 |
+
|
| 84 |
+
# Identify numeric and categorical columns
|
| 85 |
+
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
|
| 86 |
+
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
| 87 |
+
|
| 88 |
+
if len(numeric_cols) == 0:
|
| 89 |
+
st.warning("β οΈ No numeric columns found for statistical analysis.")
|
| 90 |
+
else:
|
| 91 |
+
st.subheader("π Descriptive Statistics")
|
| 92 |
+
st.dataframe(df[numeric_cols].describe())
|
| 93 |
+
|
| 94 |
+
# Histogram
|
| 95 |
+
st.subheader("π Histogram")
|
| 96 |
+
selected_col = st.selectbox("Select a numeric column for histogram:", numeric_cols)
|
| 97 |
+
fig_hist = px.histogram(df, x=selected_col, nbins=30, title=f"Histogram of {selected_col}", marginal="box")
|
| 98 |
+
st.plotly_chart(fig_hist, use_container_width=True)
|
| 99 |
+
|
| 100 |
+
# Scatter plot
|
| 101 |
+
if len(numeric_cols) >= 2:
|
| 102 |
+
st.subheader("π Scatter Plot")
|
| 103 |
+
col_x = st.selectbox("Select X-axis column:", numeric_cols, key="x")
|
| 104 |
+
col_y = st.selectbox("Select Y-axis column:", numeric_cols, key="y")
|
| 105 |
+
color_by = st.selectbox("Color by (optional):", [None] + categorical_cols, key="color")
|
| 106 |
+
if col_x != col_y:
|
| 107 |
+
fig_scatter = px.scatter(df, x=col_x, y=col_y, color=color_by, title=f"{col_x} vs {col_y}")
|
| 108 |
+
st.plotly_chart(fig_scatter, use_container_width=True)
|
| 109 |
+
else:
|
| 110 |
+
st.warning("β οΈ Please select two different columns.")
|
| 111 |
+
|
| 112 |
+
# Correlation matrix
|
| 113 |
+
st.subheader("π Correlation Matrix")
|
| 114 |
+
corr = df[numeric_cols].corr()
|
| 115 |
+
fig_corr = px.imshow(corr, text_auto=".2f", aspect="auto", title="Correlation Matrix", color_continuous_scale='RdBu_r')
|
| 116 |
+
st.plotly_chart(fig_corr, use_container_width=True)
|
| 117 |
+
|
| 118 |
+
# Missing values per column
|
| 119 |
+
st.subheader("π³οΈ Missing Values by Column")
|
| 120 |
+
nulls = df.isnull().sum()
|
| 121 |
+
if nulls.sum() > 0:
|
| 122 |
+
fig_nulls = px.bar(nulls, title="Missing Values by Column", labels={'value': 'Count', 'index': 'Column'}, color=nulls)
|
| 123 |
+
st.plotly_chart(fig_nulls, use_container_width=True)
|
| 124 |
+
else:
|
| 125 |
+
st.success("β
No missing values in the dataset.")
|
| 126 |
+
|
| 127 |
+
# === STATISTICAL TESTS ===
|
| 128 |
+
st.header("π§ͺ Statistical Tests")
|
| 129 |
+
|
| 130 |
+
# Independent T-Test (for 2 groups)
|
| 131 |
+
if len(numeric_cols) > 0 and len(categorical_cols) > 0:
|
| 132 |
+
st.subheader("Independent T-Test (2 groups)")
|
| 133 |
+
t_num_col = st.selectbox("Numeric variable:", numeric_cols, key="t_num")
|
| 134 |
+
t_cat_col = st.selectbox("Categorical variable (must have exactly 2 groups):",
|
| 135 |
+
[col for col in categorical_cols if df[col].nunique() == 2],
|
| 136 |
+
key="t_cat")
|
| 137 |
+
if t_cat_col:
|
| 138 |
+
groups = df[t_cat_col].unique()
|
| 139 |
+
if len(groups) == 2:
|
| 140 |
+
group1 = df[df[t_cat_col] == groups[0]][t_num_col].dropna()
|
| 141 |
+
group2 = df[df[t_cat_col] == groups[1]][t_num_col].dropna()
|
| 142 |
+
t_stat, p_val = stats.ttest_ind(group1, group2, equal_var=False)
|
| 143 |
+
st.write(f"**T-Test result between `{groups[0]}` and `{groups[1]}` for `{t_num_col}`:**")
|
| 144 |
+
st.write(f"- **T-statistic:** {t_stat:.4f}")
|
| 145 |
+
st.write(f"- **P-value:** {p_val:.4f}")
|
| 146 |
+
if p_val < 0.05:
|
| 147 |
+
st.success("π’ Statistically significant difference (p < 0.05)")
|
| 148 |
+
else:
|
| 149 |
+
st.error("π΄ No statistically significant difference (p >= 0.05)")
|
| 150 |
+
else:
|
| 151 |
+
st.warning("Selected categorical variable does not have exactly 2 groups.")
|
| 152 |
+
|
| 153 |
+
# ANOVA (for 3+ groups)
|
| 154 |
+
if len(numeric_cols) > 0 and len(categorical_cols) > 0:
|
| 155 |
+
st.subheader("ANOVA (3 or more groups)")
|
| 156 |
+
anova_num_col = st.selectbox("Numeric variable:", numeric_cols, key="anova_num")
|
| 157 |
+
anova_cat_col = st.selectbox("Categorical variable (3 or more groups):",
|
| 158 |
+
[col for col in categorical_cols if df[col].nunique() >= 3],
|
| 159 |
+
key="anova_cat")
|
| 160 |
+
if anova_cat_col:
|
| 161 |
+
groups = [df[df[anova_cat_col] == group][anova_num_col].dropna() for group in df[anova_cat_col].unique()]
|
| 162 |
+
if len(groups) >= 3:
|
| 163 |
+
f_stat, p_val = stats.f_oneway(*groups)
|
| 164 |
+
st.write(f"**ANOVA result for `{anova_num_col}` grouped by `{anova_cat_col}`:**")
|
| 165 |
+
st.write(f"- **F-statistic:** {f_stat:.4f}")
|
| 166 |
+
st.write(f"- **P-value:** {p_val:.4f}")
|
| 167 |
+
if p_val < 0.05:
|
| 168 |
+
st.success("π’ At least one group is significantly different (p < 0.05)")
|
| 169 |
+
else:
|
| 170 |
+
st.error("π΄ No significant differences between groups (p >= 0.05)")
|
| 171 |
+
|
| 172 |
+
# Chi-Square Test (between two categorical variables)
|
| 173 |
+
if len(categorical_cols) >= 2:
|
| 174 |
+
st.subheader("Chi-Square Test (Association between categorical variables)")
|
| 175 |
+
chi_col1 = st.selectbox("First categorical variable:", categorical_cols, key="chi1")
|
| 176 |
+
chi_col2 = st.selectbox("Second categorical variable:", [col for col in categorical_cols if col != chi_col1], key="chi2")
|
| 177 |
+
if chi_col1 and chi_col2:
|
| 178 |
+
contingency_table = pd.crosstab(df[chi_col1], df[chi_col2])
|
| 179 |
+
chi2, p_val, dof, expected = stats.chi2_contingency(contingency_table)
|
| 180 |
+
st.write(f"**Chi-Square result between `{chi_col1}` and `{chi_col2}`:**")
|
| 181 |
+
st.write(f"- **ChiΒ² statistic:** {chi2:.4f}")
|
| 182 |
+
st.write(f"- **P-value:** {p_val:.4f}")
|
| 183 |
+
st.write(f"- **Degrees of freedom:** {dof}")
|
| 184 |
+
if p_val < 0.05:
|
| 185 |
+
st.success("π’ Variables are associated (p < 0.05)")
|
| 186 |
+
else:
|
| 187 |
+
st.error("π΄ No evidence of association between variables (p >= 0.05)")
|
| 188 |
+
with st.expander("π Contingency Table"):
|
| 189 |
+
st.dataframe(contingency_table)
|
| 190 |
+
|
| 191 |
+
else:
|
| 192 |
+
st.info("π Upload a CSV file or click 'Load Demo Dataset' to get started.")
|
| 193 |
|
| 194 |
+
# Footer
|
| 195 |
+
st.markdown("---")
|
| 196 |
+
st.caption(f"Β© {AUTHOR} | License {LICENSE} | Contact: {EMAIL}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|