Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
token = "" # hugging face token
|
| 8 |
+
@st.cache_resource
|
| 9 |
+
def load_model(base_model_path) :
|
| 10 |
+
"""
|
| 11 |
+
Load the base model and apply the adapter.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
print('START OF THE APP')
|
| 15 |
+
# Load the base model and tokenizer
|
| 16 |
+
token = ''
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token) # meta-llama/Llama-3.2-1B
|
| 18 |
+
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-3.2-3B-Instruct', token=token,device_map="auto", low_cpu_mem_usage=True,trust_remote_code=True,torch_dtype=torch.float16)
|
| 19 |
+
print('Loaded the BASE MODEL AND TOKENIZER ')
|
| 20 |
+
print(f"Base Model Path: {base_model_path}")
|
| 21 |
+
print(f"Adapter Path: {adapter_path}")
|
| 22 |
+
# Load the adapter
|
| 23 |
+
model = PeftModel.from_pretrained(base_model,'eromanova115/CyberSecurityAIAssistant',token=token)
|
| 24 |
+
# adapter_config_path = os.path.dirname('CyberSecurityAssistant/adapter_config.json')
|
| 25 |
+
# print(f"Adapter Config Path: {adapter_config_path}")
|
| 26 |
+
# print('type of adapter config path ',type(adapter_config_path))
|
| 27 |
+
# model = PeftModel.from_pretrained(
|
| 28 |
+
# base_model,
|
| 29 |
+
# adapter_path,
|
| 30 |
+
# config=adapter_config_path,
|
| 31 |
+
# torch_dtype='auto'
|
| 32 |
+
# )
|
| 33 |
+
# model = PeftModel.from_pretrained(base_model,adapter_path)
|
| 34 |
+
model = model.merge_and_unload()
|
| 35 |
+
print('Model is merged successful')
|
| 36 |
+
return model, tokenizer
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Streamlit UI
|
| 40 |
+
st.title("Cybersecurity AI ASSISTANT LLM Security")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Sidebar inputs for model paths
|
| 44 |
+
base_model_path = st.sidebar.text_input("Base Model Path from HF", 'meta-llama/Llama-3.2-3B')
|
| 45 |
+
adapter_path = st.sidebar.text_input("Adapter Safetensors Path", 'CyberSecurityAssistant')
|
| 46 |
+
adapter_config_path = st.sidebar.text_input("Adapter Config Path", 'CyberSecurityAssistant/adapter_config.json') # CyberSecurityAssistant\adapter_config.json
|
| 47 |
+
print(f"{base_model_path=}")
|
| 48 |
+
|
| 49 |
+
# Temperature slider
|
| 50 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 2.0, 0.7, step=0.1)
|
| 51 |
+
|
| 52 |
+
# Load the model
|
| 53 |
+
if base_model_path and adapter_path and adapter_config_path:
|
| 54 |
+
try:
|
| 55 |
+
with st.spinner("Loading model..."):
|
| 56 |
+
model, tokenizer = load_model(base_model_path)
|
| 57 |
+
st.sidebar.success("Model loaded successfully!")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
st.sidebar.error(f"Error loading model: {e}")
|
| 60 |
+
model, tokenizer = None, None
|
| 61 |
+
else:
|
| 62 |
+
st.warning("Please provide paths to the model and adapter files in the sidebar.")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# SYSTEM PROMPT
|
| 66 |
+
|
| 67 |
+
# GLOBAL VARIABLE INSTRUCTION
|
| 68 |
+
instruction= 'You are a Cybersecurity AI Assistant, will be glad to answer your questions related to Cybersecurity, particularly LLM Security.'
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Chat Interface
|
| 72 |
+
if model and tokenizer:
|
| 73 |
+
user_input = st.text_input("Your message", "")
|
| 74 |
+
user_input= f'{instruction} \n\nUser: {user_input}\nAI'
|
| 75 |
+
if user_input:
|
| 76 |
+
with st.spinner("Generating response..."):
|
| 77 |
+
try:
|
| 78 |
+
# Tokenize input
|
| 79 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt").to(model.device)
|
| 80 |
+
# Generate response
|
| 81 |
+
outputs = model.generate(input_ids, max_new_tokens=512, temperature=temperature)
|
| 82 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 83 |
+
st.write(f"**Response:** {response}")
|
| 84 |
+
except Exception as e:
|
| 85 |
+
st.error(f"Error generating response: {e}")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# streamlit run app.py
|