OCR-DEMO / app.py
erow's picture
fix error
637ac87
from functools import partial
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
import os
import tempfile
from PIL import Image, ImageDraw
import re # Import thΖ° viện regular expression
# --- 1. Load Model and Tokenizer (Done only once at startup) ---
print("Loading model and tokenizer...")
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load the model to CPU first; it will be moved to GPU during processing
model = AutoModel.from_pretrained(
model_name,
_attn_implementation="flash_attention_2",
trust_remote_code=True,
use_safetensors=True,
)
model = model.eval()
print("βœ… Model loaded successfully.")
# --- Helper function to find pre-generated result images ---
def find_result_image(path):
for filename in os.listdir(path):
if "grounding" in filename or "result" in filename:
try:
image_path = os.path.join(path, filename)
return Image.open(image_path)
except Exception as e:
print(f"Error opening result image {filename}: {e}")
return None
# --- 2. Main Processing Function (UPDATED for multi-bbox drawing) ---
@spaces.GPU
def process_ocr_task(image, model_size, ref_text, task_type):
"""
Processes an image with DeepSeek-OCR for all supported tasks.
Now draws ALL detected bounding boxes for ANY task.
"""
if image is None:
return "Please upload an image first.", None
print("πŸš€ Moving model to GPU...")
model_gpu = model.cuda().to(torch.bfloat16)
print("βœ… Model is on GPU.")
with tempfile.TemporaryDirectory() as output_path:
# Build the prompt... (same as before)
if task_type == "πŸ“ Free OCR":
prompt = "<image>\nFree OCR."
elif task_type == "πŸ“„ Convert to Markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown."
elif task_type == "πŸ“ˆ Parse Figure":
prompt = "<image>\nParse the figure."
elif task_type == "πŸ” Locate Object by Reference":
if not ref_text or ref_text.strip() == "":
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
else:
prompt = "<image>\nFree OCR."
temp_image_path = os.path.join(output_path, "temp_image.png")
image.save(temp_image_path)
# Configure model size... (same as before)
size_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
print(f"πŸƒ Running inference with prompt: {prompt}")
text_result = model_gpu.infer(
tokenizer,
prompt=prompt,
image_file=temp_image_path,
output_path=output_path,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=True,
test_compress=True,
eval_mode=True,
)
print(f"====\nπŸ“„ Text Result: {text_result}\n====")
# --- NEW LOGIC: Always try to find and draw all bounding boxes ---
result_image_pil = None
# Define the pattern to find all coordinates like [[280, 15, 696, 997]]
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
matches = list(pattern.finditer(text_result)) # Use finditer to get all matches
if matches:
print(f"βœ… Found {len(matches)} bounding box(es). Drawing on the original image.")
# Create a copy of the original image to draw on
image_with_bboxes = image.copy()
# draw = ImageDraw.Draw(image_with_bboxes)
w, h = image.size # Get original image dimensions
for match in matches:
# Extract coordinates as integers
coords_norm = [int(c) for c in match.groups()]
x1_norm, y1_norm, x2_norm, y2_norm = coords_norm
# Scale the normalized coordinates (from 1000x1000 space) to the image's actual size
x1 = int(x1_norm / 1000 * w)
y1 = int(y1_norm / 1000 * h)
x2 = int(x2_norm / 1000 * w)
y2 = int(y2_norm / 1000 * h)
# Crop the image to the bounding box
image_with_bboxes = image_with_bboxes.crop([x1, y1, x2, y2])
result_image_pil = image_with_bboxes
else:
# If no coordinates are found in the text, fall back to finding a pre-generated image
print("⚠️ No bounding box coordinates found in text result. Falling back to search for a result image file.")
result_image_pil = find_result_image(output_path)
return text_result, result_image_pil
# --- 3. Build the Gradio Interface (UPDATED) ---
with gr.Blocks(title="Text Extraction Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🐳 Full Demo of DeepSeek-OCR 🐳
Use the tabs below to switch between Free OCR and Locate modes.
"""
)
with gr.Tabs():
with gr.TabItem("Free OCR"):
with gr.Row():
with gr.Column(scale=1):
free_image = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"])
free_model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Base", label="βš™οΈ Resolution Size")
free_btn = gr.Button("Run Free OCR", variant="primary")
with gr.Column(scale=2):
free_output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True)
free_output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil")
# Wire Free OCR button
free_ocr = partial(process_ocr_task, task_type="πŸ“ Free OCR", ref_text="")
free_btn.click(fn=free_ocr, inputs=[free_image, free_model_size], outputs=[free_output_text, free_output_image])
with gr.TabItem("Locate"):
with gr.Row():
with gr.Column(scale=1):
loc_image = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"])
loc_model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Base", label="βš™οΈ Resolution Size")
# ref_text_input = gr.Textbox(label="πŸ“ Reference Text (what to locate)", placeholder="e.g., the teacher, 20-10, a red car...")
loc_btn = gr.Button("Locate", variant="primary")
with gr.Column(scale=2):
loc_output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True)
loc_output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil")
# Wire Locate button
pets_detection = partial(process_ocr_task, task_type="πŸ” Locate Object by Reference", ref_text="pets")
loc_btn.click(fn=pets_detection, inputs=[loc_image, loc_model_size], outputs=[loc_output_text, loc_output_image])
# Keep examples (they'll run process_ocr_task directly) - provide a compact examples widget pointing to the free tab inputs
gr.Examples(
examples=[
["doc_markdown.png", "Gundam (Recommended)", "", "πŸ“„ Convert to Markdown"],
["chart.png", "Gundam (Recommended)", "", "πŸ“ˆ Parse Figure"],
["teacher.jpg", "Base", "the teacher", "πŸ” Locate Object by Reference"],
["math_locate.jpg", "Small", "20-10", "πŸ” Locate Object by Reference"],
["receipt.jpg", "Base", "", "πŸ“ Free OCR"],
],
inputs=[free_image, free_model_size],
outputs=[free_output_text, free_output_image],
fn=process_ocr_task,
cache_examples=False,
)
# --- 4. Launch the App ---
if __name__ == "__main__":
if not os.path.exists("examples"):
os.makedirs("examples")
# Make sure to have the correct image files in your "examples" folder
# e.g., doc_markdown.png, chart.png, teacher.jpg, math_locate.jpg, receipt.jpg
demo.queue(max_size=20).launch(share=True)