Updated to ModernBERT for similarity comparsion
Browse files
app.py
CHANGED
|
@@ -1,26 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import (
|
| 4 |
-
|
| 5 |
AutoTokenizer,
|
| 6 |
-
TextIteratorStreamer,
|
| 7 |
)
|
| 8 |
import os
|
| 9 |
from threading import Thread
|
| 10 |
import spaces
|
| 11 |
import time
|
| 12 |
|
| 13 |
-
token = os.environ["HF_TOKEN"]
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
-
"microsoft/Phi-3-mini-4k-instruct", token=token,trust_remote_code=True
|
| 18 |
-
)
|
| 19 |
-
tok = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=token)
|
| 20 |
-
terminators = [
|
| 21 |
-
tok.eos_token_id,
|
| 22 |
-
]
|
| 23 |
-
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
device = torch.device("cuda")
|
| 26 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
|
@@ -28,70 +16,97 @@ else:
|
|
| 28 |
device = torch.device("cpu")
|
| 29 |
print("Using CPU")
|
| 30 |
|
| 31 |
-
model = model.to(device)
|
| 32 |
-
# Dispatch Errors
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
chat.append({"role": "user", "content": item[0]})
|
| 40 |
-
if item[1] is not None:
|
| 41 |
-
chat.append({"role": "assistant", "content": item[1]})
|
| 42 |
-
chat.append({"role": "user", "content": message})
|
| 43 |
-
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 44 |
-
model_inputs = tok([messages], return_tensors="pt").to(device)
|
| 45 |
-
streamer = TextIteratorStreamer(
|
| 46 |
-
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
| 47 |
)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
streamer=streamer,
|
| 51 |
-
max_new_tokens=max_tokens,
|
| 52 |
-
do_sample=True,
|
| 53 |
-
temperature=temperature,
|
| 54 |
-
eos_token_id=terminators,
|
| 55 |
)
|
| 56 |
-
|
| 57 |
-
if temperature == 0:
|
| 58 |
-
generate_kwargs['do_sample'] = False
|
| 59 |
-
|
| 60 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 61 |
-
t.start()
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
yield partial_text
|
| 67 |
|
| 68 |
|
| 69 |
-
|
|
|
|
| 70 |
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
),
|
| 83 |
-
gr.
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
| 91 |
),
|
| 92 |
],
|
| 93 |
-
|
| 94 |
-
title="
|
| 95 |
-
description="
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import (
|
| 4 |
+
AutoModel,
|
| 5 |
AutoTokenizer,
|
|
|
|
| 6 |
)
|
| 7 |
import os
|
| 8 |
from threading import Thread
|
| 9 |
import spaces
|
| 10 |
import time
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
device = torch.device("cuda")
|
| 14 |
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
|
|
|
| 16 |
device = torch.device("cpu")
|
| 17 |
print("Using CPU")
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
def mean_pooling(model_output, attention_mask):
|
| 21 |
+
token_embeddings = model_output[0]
|
| 22 |
+
input_mask_expanded = (
|
| 23 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
| 26 |
+
input_mask_expanded.sum(1), min=1e-9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
|
| 30 |
+
def cls_pooling(model_output):
|
| 31 |
+
return model_output[0][:, 0]
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
+
@spaces.GPU
|
| 35 |
+
def get_embedding(text, use_mean_pooling, model_id):
|
| 36 |
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 38 |
+
model = AutoModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 39 |
|
| 40 |
+
model = model.to(device)
|
| 41 |
+
inputs = tokenizer(
|
| 42 |
+
text, return_tensors="pt", padding=True, truncation=True, max_length=512
|
| 43 |
+
)
|
| 44 |
+
inputs = {name: tensor.to(device) for name, tensor in inputs.items()}
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
model_output = model(**inputs)
|
| 47 |
+
if use_mean_pooling:
|
| 48 |
+
return mean_pooling(model_output, inputs["attention_mask"])
|
| 49 |
+
return cls_pooling(model_output)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_similarity(text1, text2, pooling_method, model_id):
|
| 53 |
+
use_mean_pooling = pooling_method == "Use Mean Pooling"
|
| 54 |
+
embedding1 = get_embedding(text1, use_mean_pooling, model_id)
|
| 55 |
+
embedding2 = get_embedding(text2, use_mean_pooling, model_id)
|
| 56 |
+
return torch.nn.functional.cosine_similarity(embedding1, embedding2).item()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
gr.Interface(
|
| 60 |
+
get_similarity,
|
| 61 |
+
[
|
| 62 |
+
gr.Textbox(lines=7, label="Text 1"),
|
| 63 |
+
gr.Textbox(lines=7, label="Text 2"),
|
| 64 |
+
gr.Dropdown(
|
| 65 |
+
choices=["Use Mean Pooling", "Use CLS"],
|
| 66 |
+
value="Use Mean Pooling",
|
| 67 |
+
label="Pooling Method",
|
| 68 |
+
info="Mean Pooling: Averages all token embeddings (better for semantic similarity)\nCLS Pooling: Uses only the [CLS] token embedding (faster, might miss context)",
|
| 69 |
),
|
| 70 |
+
gr.Dropdown(
|
| 71 |
+
choices=[
|
| 72 |
+
"tasksource/ModernBERT-base-embed",
|
| 73 |
+
"tasksource/ModernBERT-base-nli",
|
| 74 |
+
"joe32140/ModernBERT-large-msmarco",
|
| 75 |
+
"answerdotai/ModernBERT-large",
|
| 76 |
+
"answerdotai/ModernBERT-base",
|
| 77 |
+
],
|
| 78 |
+
value="answerdotai/ModernBERT-large",
|
| 79 |
+
label="Model",
|
| 80 |
+
info="Choose between the variants of ModernBERT \nMight take a few seconds to load the model",
|
| 81 |
),
|
| 82 |
],
|
| 83 |
+
gr.Textbox(label="Similarity"),
|
| 84 |
+
title="ModernBERT Similarity Demo",
|
| 85 |
+
description="Compute the similarity between two texts using ModernBERT. Choose between different pooling strategies for embedding generation.",
|
| 86 |
+
examples=[
|
| 87 |
+
[
|
| 88 |
+
"The quick brown fox jumps over the lazy dog",
|
| 89 |
+
"A swift brown fox leaps above a sleeping canine",
|
| 90 |
+
"Use Mean Pooling",
|
| 91 |
+
"answerdotai/ModernBERT-large"
|
| 92 |
+
],
|
| 93 |
+
[
|
| 94 |
+
"I love programming in Python",
|
| 95 |
+
"I hate coding with Python",
|
| 96 |
+
"Use Mean Pooling",
|
| 97 |
+
"answerdotai/ModernBERT-large"
|
| 98 |
+
],
|
| 99 |
+
[
|
| 100 |
+
"The weather is beautiful today",
|
| 101 |
+
"Machine learning models are improving rapidly",
|
| 102 |
+
"Use Mean Pooling",
|
| 103 |
+
"answerdotai/ModernBERT-large"
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
"def calculate_sum(a, b):\n return a + b",
|
| 107 |
+
"def add_numbers(x, y):\n result = x + y\n return result",
|
| 108 |
+
"Use Mean Pooling",
|
| 109 |
+
"answerdotai/ModernBERT-large"
|
| 110 |
+
]
|
| 111 |
+
]
|
| 112 |
+
).launch(share=True)
|