Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # This source code is licensed under the Chameleon License found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """ | |
| Contents of this file are taken from https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/models/vqgan.py | |
| [with minimal dependencies] | |
| This implementation is inference-only -- training steps and optimizer components | |
| introduce significant additional dependencies | |
| """ | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class VectorQuantizer2(nn.Module): | |
| """ | |
| Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly | |
| avoids costly matrix multiplications and allows for post-hoc remapping of indices. | |
| """ | |
| # NOTE: due to a bug the beta term was applied to the wrong term. for | |
| # backwards compatibility we use the buggy version by default, but you can | |
| # specify legacy=False to fix it. | |
| def __init__( | |
| self, | |
| n_e, | |
| e_dim, | |
| beta, | |
| remap=None, | |
| unknown_index="random", | |
| sane_index_shape=False, | |
| legacy=True, | |
| ): | |
| super().__init__() | |
| self.n_e = n_e | |
| self.e_dim = e_dim | |
| self.beta = beta | |
| self.legacy = legacy | |
| self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
| self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
| self.remap = remap | |
| if self.remap is not None: | |
| self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
| self.re_embed = self.used.shape[0] | |
| self.unknown_index = unknown_index # "random" or "extra" or integer | |
| if self.unknown_index == "extra": | |
| self.unknown_index = self.re_embed | |
| self.re_embed = self.re_embed + 1 | |
| print( | |
| f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
| f"Using {self.unknown_index} for unknown indices." | |
| ) | |
| else: | |
| self.re_embed = n_e | |
| self.sane_index_shape = sane_index_shape | |
| def remap_to_used(self, inds): | |
| ishape = inds.shape | |
| assert len(ishape) > 1 | |
| inds = inds.reshape(ishape[0], -1) | |
| used = self.used.to(inds) | |
| match = (inds[:, :, None] == used[None, None, ...]).long() | |
| new = match.argmax(-1) | |
| unknown = match.sum(2) < 1 | |
| if self.unknown_index == "random": | |
| new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( | |
| device=new.device | |
| ) | |
| else: | |
| new[unknown] = self.unknown_index | |
| return new.reshape(ishape) | |
| def unmap_to_all(self, inds): | |
| ishape = inds.shape | |
| assert len(ishape) > 1 | |
| inds = inds.reshape(ishape[0], -1) | |
| used = self.used.to(inds) | |
| if self.re_embed > self.used.shape[0]: # extra token | |
| inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
| back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
| return back.reshape(ishape) | |
| def forward(self, z, temp=None, rescale_logits=False, return_logits=False): | |
| assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" | |
| assert rescale_logits is False, "Only for interface compatible with Gumbel" | |
| assert return_logits is False, "Only for interface compatible with Gumbel" | |
| # reshape z -> (batch, height, width, channel) and flatten | |
| z = z.permute(0, 2, 3, 1).contiguous() | |
| z_flattened = z.view(-1, self.e_dim) | |
| # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
| d = ( | |
| torch.sum(z_flattened**2, dim=1, keepdim=True) | |
| + torch.sum(self.embedding.weight**2, dim=1) | |
| - 2 | |
| * torch.einsum( | |
| "bd,dn->bn", z_flattened, self.embedding.weight.transpose(0, 1) | |
| ) | |
| ) | |
| min_encoding_indices = torch.argmin(d, dim=1) | |
| z_q = self.embedding(min_encoding_indices).view(z.shape) | |
| perplexity = None | |
| min_encodings = None | |
| # compute loss for embedding | |
| if not self.legacy: | |
| loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean( | |
| (z_q - z.detach()) ** 2 | |
| ) | |
| else: | |
| loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( | |
| (z_q - z.detach()) ** 2 | |
| ) | |
| # preserve gradients | |
| z_q = z + (z_q - z).detach() | |
| # reshape back to match original input shape | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| if self.remap is not None: | |
| min_encoding_indices = min_encoding_indices.reshape( | |
| z.shape[0], -1 | |
| ) # add batch axis | |
| min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
| min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
| if self.sane_index_shape: | |
| min_encoding_indices = min_encoding_indices.reshape( | |
| z_q.shape[0], z_q.shape[2], z_q.shape[3] | |
| ) | |
| return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
| def get_codebook_entry(self, indices, shape): | |
| # shape specifying (batch, height, width, channel) | |
| if self.remap is not None: | |
| indices = indices.reshape(shape[0], -1) # add batch axis | |
| indices = self.unmap_to_all(indices) | |
| indices = indices.reshape(-1) # flatten again | |
| # get quantized latent vectors | |
| z_q = self.embedding(indices) | |
| if shape is not None: | |
| z_q = z_q.view(shape) | |
| # reshape back to match original input shape | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| return z_q | |
| # Alias | |
| VectorQuantizer = VectorQuantizer2 | |
| def nonlinearity(x): | |
| # swish | |
| return x * torch.sigmoid(x) | |
| def Normalize(in_channels, num_groups=32): | |
| return torch.nn.GroupNorm( | |
| num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| class Upsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, x): | |
| x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class Downsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
| ) | |
| def forward(self, x): | |
| if self.with_conv: | |
| pad = (0, 1, 0, 1) | |
| x = F.pad(x, pad, mode="constant", value=0) | |
| x = self.conv(x) | |
| else: | |
| x = F.avg_pool2d(x, kernel_size=2, stride=2) | |
| return x | |
| class ResnetBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| conv_shortcut=False, | |
| dropout, | |
| temb_channels=512, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if temb_channels > 0: | |
| self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv2d( | |
| out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = nonlinearity(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
| h = self.norm2(h) | |
| h = nonlinearity(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x + h | |
| class AttnBlock(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.k = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.v = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.proj_out = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b, c, h, w = q.shape | |
| q = q.reshape(b, c, h * w) | |
| q = q.permute(0, 2, 1) # b,hw,c | |
| k = k.reshape(b, c, h * w) # b,c,hw | |
| w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
| w_ = w_ * (int(c) ** (-0.5)) | |
| w_ = F.softmax(w_, dim=2) | |
| # attend to values | |
| v = v.reshape(b, c, h * w) | |
| w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
| h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
| h_ = h_.reshape(b, c, h, w) | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |
| def make_attn(in_channels, attn_type="vanilla"): | |
| assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" | |
| # print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
| if attn_type == "vanilla": | |
| return AttnBlock(in_channels) | |
| elif attn_type == "none": | |
| return nn.Identity(in_channels) | |
| else: | |
| raise ValueError("Unexpected attention type") | |
| class Encoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| ch, | |
| out_ch, | |
| ch_mult=(1, 2, 4, 8), | |
| num_res_blocks, | |
| attn_resolutions, | |
| dropout=0.0, | |
| resamp_with_conv=True, | |
| in_channels, | |
| resolution, | |
| z_channels, | |
| double_z=True, | |
| use_linear_attn=False, | |
| attn_type="vanilla", | |
| **ignore_kwargs, | |
| ): | |
| super().__init__() | |
| if use_linear_attn: | |
| attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d( | |
| in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| curr_res = resolution | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| self.in_ch_mult = in_ch_mult | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = ch * in_ch_mult[i_level] | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions - 1: | |
| down.downsample = Downsample(block_in, resamp_with_conv) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, | |
| 2 * z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| def forward(self, x): | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions - 1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| return h | |
| class Decoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| ch, | |
| out_ch, | |
| ch_mult=(1, 2, 4, 8), | |
| num_res_blocks, | |
| attn_resolutions, | |
| dropout=0.0, | |
| resamp_with_conv=True, | |
| in_channels, | |
| resolution, | |
| z_channels, | |
| give_pre_end=False, | |
| tanh_out=False, | |
| use_linear_attn=False, | |
| attn_type="vanilla", | |
| **ignorekwargs, | |
| ): | |
| super().__init__() | |
| if use_linear_attn: | |
| attn_type = "linear" | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_channels = in_channels | |
| self.give_pre_end = give_pre_end | |
| self.tanh_out = tanh_out | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| block_in = ch * ch_mult[self.num_resolutions - 1] | |
| curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
| self.z_shape = (1, z_channels, curr_res, curr_res) | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv2d( | |
| z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
| ) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks + 1): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(make_attn(block_in, attn_type=attn_type)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, resamp_with_conv) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| # end | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, z): | |
| # assert z.shape[1:] == self.z_shape[1:] | |
| self.last_z_shape = z.shape | |
| # timestep embedding | |
| temb = None | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks + 1): | |
| h = self.up[i_level].block[i_block](h, temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| if self.give_pre_end: | |
| return h | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| if self.tanh_out: | |
| h = torch.tanh(h) | |
| return h | |
| class VQModel(nn.Module): | |
| def __init__( | |
| self, | |
| ddconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| scheduler_config=None, | |
| lr_g_factor=1.0, | |
| remap=None, | |
| sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
| ): | |
| super().__init__() | |
| self.image_key = image_key | |
| self.encoder = Encoder(**ddconfig) | |
| self.decoder = Decoder(**ddconfig) | |
| self.quantize = VectorQuantizer( | |
| n_embed, | |
| embed_dim, | |
| beta=0.25, | |
| remap=remap, | |
| sane_index_shape=sane_index_shape, | |
| ) | |
| self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| self.image_key = image_key | |
| if colorize_nlabels is not None: | |
| assert isinstance(colorize_nlabels, int) | |
| self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
| if monitor is not None: | |
| self.monitor = monitor | |
| self.scheduler_config = scheduler_config | |
| self.lr_g_factor = lr_g_factor | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| self.load_state_dict(sd, strict=False) | |
| print(f"VQModel loaded from {path}") | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| quant, emb_loss, info = self.quantize(h) | |
| return quant, emb_loss, info | |
| def decode(self, quant): | |
| quant = self.post_quant_conv(quant) | |
| dec = self.decoder(quant) | |
| return dec | |
| def decode_code(self, code_b): | |
| quant_b = self.quantize.embed_code(code_b) | |
| dec = self.decode(quant_b) | |
| return dec | |
| def forward(self, input): | |
| quant, diff, _ = self.encode(input) | |
| dec = self.decode(quant) | |
| return dec, diff | |
| def get_input(self, batch, k): | |
| x = batch[k] | |
| if len(x.shape) == 3: | |
| x = x[..., None] | |
| x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
| return x.float() | |
| def get_last_layer(self): | |
| return self.decoder.conv_out.weight | |
| def log_images(self, batch, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| xrec, _ = self(x) | |
| if x.shape[1] > 3: | |
| # colorize with random projection | |
| assert xrec.shape[1] > 3 | |
| x = self.to_rgb(x) | |
| xrec = self.to_rgb(xrec) | |
| log["inputs"] = x | |
| log["reconstructions"] = xrec | |
| return log | |
| def to_rgb(self, x): | |
| assert self.image_key == "segmentation" | |
| if not hasattr(self, "colorize"): | |
| self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
| x = F.conv2d(x, weight=self.colorize) | |
| x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 | |
| return x | |