Spaces:
Build error
Build error
| from classes import classes | |
| import numpy as np | |
| from sentence_transformers import SentenceTransformer, util | |
| import streamlit as st | |
| # Simple sentence transformer | |
| model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1' | |
| model = SentenceTransformer(model_checkpoint) | |
| # Predefined messages and their embeddings | |
| classes_text = np.array(classes) | |
| classes_embeddings = model.encode(classes_text, convert_to_numpy=True) | |
| assert classes_embeddings.shape[0] == len(classes) | |
| # Function to compare the embedding of the human chat/text message with the embeddings of the | |
| # predefined messages | |
| def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array: | |
| similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,) | |
| top_n_indices = np.argsort(similarities)[::-1][0:top_n] | |
| return top_n_indices | |
| # Simple title and description for the app | |
| st.title('JHG Chat Message Converter') | |
| st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer') | |
| # Number of predictions to display | |
| n_preds = st.slider("Number of predictions to display:", min_value=1, max_value=10, step=1) | |
| # Text box to enter a chat/text message | |
| text = st.text_area('Enter chat message') | |
| if text and n_preds: | |
| # Use the sentence transformer and "convert" function to display predicted, predefined messages | |
| text_embedding = model.encode(text, convert_to_numpy=True) | |
| indices = convert(text_embedding, classes_embeddings, top_n=n_preds) | |
| predicted_classes = classes_text[indices] | |
| for converted_message in predicted_classes: | |
| st.write(converted_message) |