Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from classes import classes
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Simple sentence transformer
|
| 8 |
+
model_checkpoint = 'sentence-transformers/paraphrase-distilroberta-base-v1'
|
| 9 |
+
model = SentenceTransformer(model_checkpoint)
|
| 10 |
+
|
| 11 |
+
# Predefined messages and their embeddings
|
| 12 |
+
classes_text = np.array(classes)
|
| 13 |
+
classes_embeddings = model.encode(classes_text, convert_to_numpy=True)
|
| 14 |
+
assert classes_embeddings.shape[0] == len(classes)
|
| 15 |
+
|
| 16 |
+
# Function to compare the embedding of the human chat/text message with the embeddings of the
|
| 17 |
+
# predefined messages
|
| 18 |
+
def convert(sentence_embedding: np.array, class_embeddings: np.array, top_n=5) -> np.array:
|
| 19 |
+
similarities = np.array(util.cos_sim(sentence_embedding, class_embeddings)).reshape(-1,)
|
| 20 |
+
top_n_indices = np.argsort(similarities)[::-1][0:top_n]
|
| 21 |
+
|
| 22 |
+
return top_n_indices
|
| 23 |
+
|
| 24 |
+
# Simple title and description for the app
|
| 25 |
+
st.title('JHG Chat Message Converter')
|
| 26 |
+
st.write('Converts human chat/text messages into predefined chat messages via a sentence transformer')
|
| 27 |
+
|
| 28 |
+
# Text box to enter a chat/text message
|
| 29 |
+
text = st.text_area('Enter chat message')
|
| 30 |
+
|
| 31 |
+
if text:
|
| 32 |
+
# Use the sentence transformer and "convert" function to display predicted, predefined messages
|
| 33 |
+
text_embedding = model.encode(text, convert_to_numpy=True)
|
| 34 |
+
indices = convert(text_embedding, classes_embeddings)
|
| 35 |
+
predicted_classes = classes_text[indices]
|
| 36 |
+
|
| 37 |
+
for converted_message in predicted_classes:
|
| 38 |
+
st.write(converted_message)
|