Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio.data_classes import FileData | |
| from huggingface_hub import snapshot_download | |
| from pathlib import Path | |
| import base64 | |
| import spaces | |
| import os | |
| from mistral_inference.transformer import Transformer | |
| from mistral_inference.generate import generate | |
| from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
| from mistral_common.protocol.instruct.messages import UserMessage, AssistantMessage, TextChunk, ImageURLChunk | |
| from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
| models_path = Path.home().joinpath('pixtral', 'Pixtral') | |
| models_path.mkdir(parents=True, exist_ok=True) | |
| snapshot_download(repo_id="mistral-community/pixtral-12b-240910", | |
| allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], | |
| local_dir=models_path) | |
| tokenizer = MistralTokenizer.from_file(f"{models_path}/tekken.json") | |
| model = Transformer.from_folder(models_path) | |
| def image_to_base64(image_path): | |
| with open(image_path, 'rb') as img: | |
| encoded_string = base64.b64encode(img.read()).decode('utf-8') | |
| return f"data:image/jpeg;base64,{encoded_string}" | |
| def run_inference(message, history): | |
| ## may work | |
| messages = [] | |
| images = [] | |
| for couple in history: | |
| if type(couple[0]) is tuple: | |
| images += couple[0] | |
| elif couple[0][1]: | |
| messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(path)) for path in images]+[TextChunk(text=couple[0][1])])) | |
| messages.append(AssistantMessage(content = couple[1])) | |
| images = [] | |
| ## | |
| messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in message["files"]]+[TextChunk(text=message["text"])])) | |
| completion_request = ChatCompletionRequest(messages=messages) | |
| encoded = tokenizer.encode_chat_completion(completion_request) | |
| images = encoded.images | |
| tokens = encoded.tokens | |
| out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
| result = tokenizer.decode(out_tokens[0]) | |
| return result | |
| demo = gr.ChatInterface(fn=run_inference, title="Pixtral 12B", multimodal=True, description="A demo chat interface with Pixtral 12B, deployed using Mistral Inference.") | |
| demo.queue().launch() |