Geoffrey Hollingworth
commited on
Commit
·
3d3f535
1
Parent(s):
72fcc88
initial upload
Browse files- .gitignore +118 -0
- README.md +8 -12
- app.py +146 -0
- app.py.safe +155 -0
- app.py.sentiment-one +118 -0
- requirements.txt +5 -0
- run_streamlist.sh +5 -0
.gitignore
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
pip-wheel-metadata/
|
| 24 |
+
share/python-wheels/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# PyInstaller
|
| 31 |
+
# Usually these files are written by a python script from a template
|
| 32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 33 |
+
*.manifest
|
| 34 |
+
*.spec
|
| 35 |
+
|
| 36 |
+
# Installer logs
|
| 37 |
+
pip-log.txt
|
| 38 |
+
pip-delete-this-directory.txt
|
| 39 |
+
|
| 40 |
+
# Unit test / coverage reports
|
| 41 |
+
htmlcov/
|
| 42 |
+
.tox/
|
| 43 |
+
.nox/
|
| 44 |
+
.coverage
|
| 45 |
+
.coverage.*
|
| 46 |
+
.cache
|
| 47 |
+
nosetests.xml
|
| 48 |
+
coverage.xml
|
| 49 |
+
*.cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
.coverage
|
| 53 |
+
|
| 54 |
+
# Jupyter Notebook
|
| 55 |
+
.ipynb_checkpoints
|
| 56 |
+
|
| 57 |
+
# IPython
|
| 58 |
+
profile_default/
|
| 59 |
+
ipython_config.py
|
| 60 |
+
|
| 61 |
+
# pyenv
|
| 62 |
+
# For a library or tool, you might want to ignore these files since the code is intended to run in multiple environments;
|
| 63 |
+
# otherwise, check in the pyenv configuration files, especially if you are in an isolated environment.
|
| 64 |
+
.pyenv
|
| 65 |
+
|
| 66 |
+
# pipenv
|
| 67 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 68 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 69 |
+
# not cross-compatible, pipenv may install dependencies that are not in line with the rest of the team.
|
| 70 |
+
Pipfile.lock
|
| 71 |
+
|
| 72 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 73 |
+
__pypackages__/
|
| 74 |
+
|
| 75 |
+
# Environments
|
| 76 |
+
.env
|
| 77 |
+
.venv
|
| 78 |
+
env/
|
| 79 |
+
venv/
|
| 80 |
+
ENV/
|
| 81 |
+
env.bak/
|
| 82 |
+
venv.bak/
|
| 83 |
+
|
| 84 |
+
# Spyder project settings
|
| 85 |
+
.spyderproject
|
| 86 |
+
.spyproject
|
| 87 |
+
|
| 88 |
+
# Rope project settings
|
| 89 |
+
.ropeproject
|
| 90 |
+
|
| 91 |
+
# mkdocs documentation
|
| 92 |
+
/site
|
| 93 |
+
|
| 94 |
+
# mypy
|
| 95 |
+
.mypy_cache/
|
| 96 |
+
.dmypy.json
|
| 97 |
+
dmypy.json
|
| 98 |
+
|
| 99 |
+
# Pyre type checker
|
| 100 |
+
.pyre/
|
| 101 |
+
|
| 102 |
+
# Pycharm
|
| 103 |
+
.idea/
|
| 104 |
+
|
| 105 |
+
# VS Code
|
| 106 |
+
.vscode/
|
| 107 |
+
|
| 108 |
+
# Streamlit static files
|
| 109 |
+
.streamlit/
|
| 110 |
+
|
| 111 |
+
# Local environment variables
|
| 112 |
+
.env
|
| 113 |
+
|
| 114 |
+
# Deepface models
|
| 115 |
+
. deepface_weights/
|
| 116 |
+
|
| 117 |
+
# MacOS specific
|
| 118 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -1,13 +1,9 @@
|
|
| 1 |
-
|
| 2 |
-
title: Sentiment Analyzer
|
| 3 |
-
emoji: 🦀
|
| 4 |
-
colorFrom: indigo
|
| 5 |
-
colorTo: blue
|
| 6 |
-
sdk: streamlit
|
| 7 |
-
sdk_version: 1.35.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Facial Sentiment Analysis with Streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
This Streamlit application streams video from the webcam, analyzes facial sentiment, and displays the results in real-time.
|
| 4 |
+
|
| 5 |
+
## How to Use
|
| 6 |
+
|
| 7 |
+
1. Clone the repository.
|
| 8 |
+
2. Ensure you have the necessary packages installed: `pip install -r requirements.txt`
|
| 9 |
+
3. Run the application: `streamlit run app.py`
|
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['OPENCV_AVFOUNDATION_SKIP_AUTH'] = '1'
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from PIL import Image, ImageDraw
|
| 9 |
+
from mtcnn import MTCNN
|
| 10 |
+
|
| 11 |
+
# Initialize the Hugging Face pipeline for facial emotion detection
|
| 12 |
+
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression")
|
| 13 |
+
|
| 14 |
+
# Initialize MTCNN for face detection
|
| 15 |
+
mtcnn = MTCNN()
|
| 16 |
+
|
| 17 |
+
# Function to analyze sentiment
|
| 18 |
+
def analyze_sentiment(face):
|
| 19 |
+
# Convert face to RGB
|
| 20 |
+
rgb_face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
| 21 |
+
# Convert the face to a PIL image
|
| 22 |
+
pil_image = Image.fromarray(rgb_face)
|
| 23 |
+
# Analyze sentiment using the Hugging Face pipeline
|
| 24 |
+
results = emotion_pipeline(pil_image)
|
| 25 |
+
# Get the dominant emotion
|
| 26 |
+
dominant_emotion = max(results, key=lambda x: x['score'])['label']
|
| 27 |
+
return dominant_emotion
|
| 28 |
+
|
| 29 |
+
TEXT_SIZE = 3
|
| 30 |
+
|
| 31 |
+
# Function to detect faces, analyze sentiment, and draw a red box around them
|
| 32 |
+
def detect_and_draw_faces(frame):
|
| 33 |
+
# Detect faces using MTCNN
|
| 34 |
+
results = mtcnn.detect_faces(frame)
|
| 35 |
+
|
| 36 |
+
# Draw on the frame
|
| 37 |
+
for result in results:
|
| 38 |
+
x, y, w, h = result['box']
|
| 39 |
+
face = frame[y:y+h, x:x+w]
|
| 40 |
+
sentiment = analyze_sentiment(face)
|
| 41 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 10) # Thicker red box
|
| 42 |
+
|
| 43 |
+
# Calculate position for the text background and the text itself
|
| 44 |
+
text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[0]
|
| 45 |
+
text_x = x
|
| 46 |
+
text_y = y - 10
|
| 47 |
+
background_tl = (text_x, text_y - text_size[1])
|
| 48 |
+
background_br = (text_x + text_size[0], text_y + 5)
|
| 49 |
+
|
| 50 |
+
# Draw black rectangle as background
|
| 51 |
+
cv2.rectangle(frame, background_tl, background_br, (0, 0, 0), cv2.FILLED)
|
| 52 |
+
# Draw white text on top
|
| 53 |
+
cv2.putText(frame, sentiment, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, (255, 255, 255), 2)
|
| 54 |
+
|
| 55 |
+
return frame
|
| 56 |
+
|
| 57 |
+
# Function to capture video from webcam
|
| 58 |
+
def video_stream():
|
| 59 |
+
video_capture = cv2.VideoCapture(0)
|
| 60 |
+
if not video_capture.isOpened():
|
| 61 |
+
st.error("Error: Could not open video capture device.")
|
| 62 |
+
return
|
| 63 |
+
|
| 64 |
+
while True:
|
| 65 |
+
ret, frame = video_capture.read()
|
| 66 |
+
if not ret:
|
| 67 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 68 |
+
break
|
| 69 |
+
yield frame
|
| 70 |
+
|
| 71 |
+
video_capture.release()
|
| 72 |
+
|
| 73 |
+
# Streamlit UI
|
| 74 |
+
st.markdown(
|
| 75 |
+
"""
|
| 76 |
+
<style>
|
| 77 |
+
.main {
|
| 78 |
+
background-color: #FFFFFF;
|
| 79 |
+
}
|
| 80 |
+
.reportview-container .main .block-container{
|
| 81 |
+
padding-top: 2rem;
|
| 82 |
+
}
|
| 83 |
+
h1 {
|
| 84 |
+
color: #E60012;
|
| 85 |
+
font-family: 'Arial Black', Gadget, sans-serif;
|
| 86 |
+
}
|
| 87 |
+
h2 {
|
| 88 |
+
color: #E60012;
|
| 89 |
+
font-family: 'Arial', sans-serif;
|
| 90 |
+
}
|
| 91 |
+
h3 {
|
| 92 |
+
color: #333333;
|
| 93 |
+
font-family: 'Arial', sans-serif;
|
| 94 |
+
}
|
| 95 |
+
.stButton button {
|
| 96 |
+
background-color: #E60012;
|
| 97 |
+
color: white;
|
| 98 |
+
border-radius: 5px;
|
| 99 |
+
font-size: 16px;
|
| 100 |
+
}
|
| 101 |
+
</style>
|
| 102 |
+
""",
|
| 103 |
+
unsafe_allow_html=True
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
st.title("Computer Vision Test Lab")
|
| 107 |
+
st.subheader("Facial Sentiment")
|
| 108 |
+
|
| 109 |
+
# Columns for input and output streams
|
| 110 |
+
col1, col2 = st.columns(2)
|
| 111 |
+
|
| 112 |
+
with col1:
|
| 113 |
+
st.header("Input Stream")
|
| 114 |
+
st.subheader("Webcam")
|
| 115 |
+
video_placeholder = st.empty()
|
| 116 |
+
|
| 117 |
+
with col2:
|
| 118 |
+
st.header("Output Stream")
|
| 119 |
+
st.subheader("Analysis")
|
| 120 |
+
output_placeholder = st.empty()
|
| 121 |
+
|
| 122 |
+
sentiment_placeholder = st.empty()
|
| 123 |
+
|
| 124 |
+
# Start video stream
|
| 125 |
+
video_capture = cv2.VideoCapture(0)
|
| 126 |
+
if not video_capture.isOpened():
|
| 127 |
+
st.error("Error: Could not open video capture device.")
|
| 128 |
+
else:
|
| 129 |
+
while True:
|
| 130 |
+
ret, frame = video_capture.read()
|
| 131 |
+
if not ret:
|
| 132 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
# Display the input stream with the red box around the face
|
| 136 |
+
video_placeholder.image(frame, channels="BGR")
|
| 137 |
+
|
| 138 |
+
# Detect faces, analyze sentiment, and draw red boxes with sentiment labels
|
| 139 |
+
frame_with_boxes = detect_and_draw_faces(frame)
|
| 140 |
+
|
| 141 |
+
# Display the output stream (here it's the same as input, modify as needed)
|
| 142 |
+
output_placeholder.image(frame_with_boxes, channels="BGR")
|
| 143 |
+
|
| 144 |
+
# Add a short delay to control the frame rate
|
| 145 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 146 |
+
break
|
app.py.safe
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['OPENCV_AVFOUNDATION_SKIP_AUTH'] = '1'
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from PIL import Image, ImageDraw
|
| 9 |
+
|
| 10 |
+
# Initialize the Hugging Face pipeline for facial emotion detection using the "trpakov/vit-face-expression" model
|
| 11 |
+
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression")
|
| 12 |
+
|
| 13 |
+
# Function to analyze sentiment
|
| 14 |
+
def analyze_sentiment(face):
|
| 15 |
+
# Convert face to RGB
|
| 16 |
+
rgb_face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
| 17 |
+
# Convert the face to a PIL image
|
| 18 |
+
pil_image = Image.fromarray(rgb_face)
|
| 19 |
+
# Analyze sentiment using the Hugging Face pipeline
|
| 20 |
+
results = emotion_pipeline(pil_image)
|
| 21 |
+
# Get the dominant emotion
|
| 22 |
+
dominant_emotion = max(results, key=lambda x: x['score'])['label']
|
| 23 |
+
return dominant_emotion
|
| 24 |
+
|
| 25 |
+
TEXT_SIZE = 3
|
| 26 |
+
|
| 27 |
+
# Function to detect faces, analyze sentiment, and draw a red box around them
|
| 28 |
+
def detect_and_draw_faces(frame):
|
| 29 |
+
# Convert frame to RGB
|
| 30 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 31 |
+
# Convert the frame to a PIL image
|
| 32 |
+
pil_image = Image.fromarray(rgb_frame)
|
| 33 |
+
# Analyze sentiment using the Hugging Face pipeline
|
| 34 |
+
results = emotion_pipeline(pil_image)
|
| 35 |
+
|
| 36 |
+
# Print the results to understand the structure
|
| 37 |
+
print(results)
|
| 38 |
+
|
| 39 |
+
# Draw on the PIL image
|
| 40 |
+
draw = ImageDraw.Draw(pil_image)
|
| 41 |
+
|
| 42 |
+
# Iterate through detected faces
|
| 43 |
+
for result in results:
|
| 44 |
+
box = result['box']
|
| 45 |
+
sentiment = result['label']
|
| 46 |
+
|
| 47 |
+
# Draw rectangle and text
|
| 48 |
+
x, y, w, h = box['left'], box['top'], box['width'], box['height']
|
| 49 |
+
draw.rectangle(((x, y), (x+w, y+h)), outline="red", width=3)
|
| 50 |
+
|
| 51 |
+
# Calculate position for the text background and the text itself
|
| 52 |
+
text_size = draw.textsize(sentiment)
|
| 53 |
+
background_tl = (x, y - text_size[1] - 5)
|
| 54 |
+
background_br = (x + text_size[0], y)
|
| 55 |
+
|
| 56 |
+
# Draw black rectangle as background
|
| 57 |
+
draw.rectangle([background_tl, background_br], fill="black")
|
| 58 |
+
# Draw white text on top
|
| 59 |
+
draw.text((x, y - text_size[1]), sentiment, fill="white")
|
| 60 |
+
|
| 61 |
+
# Convert back to OpenCV format
|
| 62 |
+
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 63 |
+
|
| 64 |
+
return frame_with_boxes
|
| 65 |
+
|
| 66 |
+
# Function to capture video from webcam
|
| 67 |
+
def video_stream():
|
| 68 |
+
video_capture = cv2.VideoCapture(0)
|
| 69 |
+
if not video_capture.isOpened():
|
| 70 |
+
st.error("Error: Could not open video capture device.")
|
| 71 |
+
return
|
| 72 |
+
|
| 73 |
+
while True:
|
| 74 |
+
ret, frame = video_capture.read()
|
| 75 |
+
if not ret:
|
| 76 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 77 |
+
break
|
| 78 |
+
yield frame
|
| 79 |
+
|
| 80 |
+
video_capture.release()
|
| 81 |
+
|
| 82 |
+
# Streamlit UI
|
| 83 |
+
st.markdown(
|
| 84 |
+
"""
|
| 85 |
+
<style>
|
| 86 |
+
.main {
|
| 87 |
+
background-color: #FFFFFF;
|
| 88 |
+
}
|
| 89 |
+
.reportview-container .main .block-container{
|
| 90 |
+
padding-top: 2rem;
|
| 91 |
+
}
|
| 92 |
+
h1 {
|
| 93 |
+
color: #E60012;
|
| 94 |
+
font-family: 'Arial Black', Gadget, sans-serif;
|
| 95 |
+
}
|
| 96 |
+
h2 {
|
| 97 |
+
color: #E60012;
|
| 98 |
+
font-family: 'Arial', sans-serif;
|
| 99 |
+
}
|
| 100 |
+
h3 {
|
| 101 |
+
color: #333333;
|
| 102 |
+
font-family: 'Arial', sans-serif;
|
| 103 |
+
}
|
| 104 |
+
.stButton button {
|
| 105 |
+
background-color: #E60012;
|
| 106 |
+
color: white;
|
| 107 |
+
border-radius: 5px;
|
| 108 |
+
font-size: 16px;
|
| 109 |
+
}
|
| 110 |
+
</style>
|
| 111 |
+
""",
|
| 112 |
+
unsafe_allow_html=True
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
st.title("Computer Vision Test Lab")
|
| 116 |
+
st.subheader("Facial Sentiment")
|
| 117 |
+
|
| 118 |
+
# Columns for input and output streams
|
| 119 |
+
col1, col2 = st.columns(2)
|
| 120 |
+
|
| 121 |
+
with col1:
|
| 122 |
+
st.header("Input Stream")
|
| 123 |
+
st.subheader("Webcam")
|
| 124 |
+
video_placeholder = st.empty()
|
| 125 |
+
|
| 126 |
+
with col2:
|
| 127 |
+
st.header("Output Stream")
|
| 128 |
+
st.subheader("Analysis")
|
| 129 |
+
output_placeholder = st.empty()
|
| 130 |
+
|
| 131 |
+
sentiment_placeholder = st.empty()
|
| 132 |
+
|
| 133 |
+
# Start video stream
|
| 134 |
+
video_capture = cv2.VideoCapture(0)
|
| 135 |
+
if not video_capture.isOpened():
|
| 136 |
+
st.error("Error: Could not open video capture device.")
|
| 137 |
+
else:
|
| 138 |
+
while True:
|
| 139 |
+
ret, frame = video_capture.read()
|
| 140 |
+
if not ret:
|
| 141 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
# Detect faces, analyze sentiment, and draw red boxes with sentiment labels
|
| 145 |
+
frame_with_boxes = detect_and_draw_faces(frame)
|
| 146 |
+
|
| 147 |
+
# Display the input stream with the red box around the face
|
| 148 |
+
video_placeholder.image(frame_with_boxes, channels="BGR")
|
| 149 |
+
|
| 150 |
+
# Display the output stream (here it's the same as input, modify as needed)
|
| 151 |
+
output_placeholder.image(frame_with_boxes, channels="BGR")
|
| 152 |
+
|
| 153 |
+
# Add a short delay to control the frame rate
|
| 154 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 155 |
+
break
|
app.py.sentiment-one
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['OPENCV_AVFOUNDATION_SKIP_AUTH'] = '1'
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import cv2
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# Initialize the Hugging Face pipeline for facial emotion detection
|
| 10 |
+
emotion_pipeline = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
|
| 11 |
+
|
| 12 |
+
# Function to analyze sentiment
|
| 13 |
+
def analyze_sentiment(frame):
|
| 14 |
+
# Convert frame to RGB
|
| 15 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 16 |
+
# Convert the frame to a PIL image
|
| 17 |
+
pil_image = Image.fromarray(rgb_frame)
|
| 18 |
+
# Analyze sentiment using the Hugging Face pipeline
|
| 19 |
+
results = emotion_pipeline(pil_image) # Analyze sentiment using the Hugging Face pipeline
|
| 20 |
+
results = emotion_pipeline(pil_image)
|
| 21 |
+
# Get the dominant emotion
|
| 22 |
+
dominant_emotion = max(results, key=lambda x: x['score'])['label']
|
| 23 |
+
return dominant_emotion
|
| 24 |
+
|
| 25 |
+
# Function to capture video from webcam
|
| 26 |
+
def video_stream():
|
| 27 |
+
video_capture = cv2.VideoCapture(0)
|
| 28 |
+
if not video_capture.isOpened():
|
| 29 |
+
st.error("Error: Could not open video capture device.")
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
while True:
|
| 33 |
+
ret, frame = video_capture.read()
|
| 34 |
+
if not ret:
|
| 35 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 36 |
+
break
|
| 37 |
+
yield frame
|
| 38 |
+
|
| 39 |
+
video_capture.release()
|
| 40 |
+
|
| 41 |
+
# Streamlit UI
|
| 42 |
+
st.markdown(
|
| 43 |
+
"""
|
| 44 |
+
<style>
|
| 45 |
+
.main {
|
| 46 |
+
background-color: #FFFFFF;
|
| 47 |
+
}
|
| 48 |
+
.reportview-container .main .block-container{
|
| 49 |
+
padding-top: 2rem;
|
| 50 |
+
}
|
| 51 |
+
h1 {
|
| 52 |
+
color: #E60012;
|
| 53 |
+
font-family: 'Arial Black', Gadget, sans-serif;
|
| 54 |
+
}
|
| 55 |
+
h2 {
|
| 56 |
+
color: #E60012;
|
| 57 |
+
font-family: 'Arial', sans-serif;
|
| 58 |
+
}
|
| 59 |
+
h3 {
|
| 60 |
+
color: #333333;
|
| 61 |
+
font-family: 'Arial', sans-serif;
|
| 62 |
+
}
|
| 63 |
+
.stButton button {
|
| 64 |
+
background-color: #E60012;
|
| 65 |
+
color: white;
|
| 66 |
+
border-radius: 5px;
|
| 67 |
+
font-size: 16px;
|
| 68 |
+
}
|
| 69 |
+
</style>
|
| 70 |
+
""",
|
| 71 |
+
unsafe_allow_html=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
st.title("Computer Vision Test Lab")
|
| 75 |
+
st.subheader("Facial Sentiment")
|
| 76 |
+
|
| 77 |
+
# Columns for input and output streams
|
| 78 |
+
col1, col2 = st.columns(2)
|
| 79 |
+
|
| 80 |
+
with col1:
|
| 81 |
+
st.header("Input Stream")
|
| 82 |
+
st.subheader("Webcam")
|
| 83 |
+
video_placeholder = st.empty()
|
| 84 |
+
|
| 85 |
+
with col2:
|
| 86 |
+
st.header("Output Stream")
|
| 87 |
+
st.subheader("Analysis")
|
| 88 |
+
output_placeholder = st.empty()
|
| 89 |
+
|
| 90 |
+
sentiment_placeholder = st.empty()
|
| 91 |
+
|
| 92 |
+
# Start video stream
|
| 93 |
+
video_capture = cv2.VideoCapture(0)
|
| 94 |
+
if not video_capture.isOpened():
|
| 95 |
+
st.error("Error: Could not open video capture device.")
|
| 96 |
+
else:
|
| 97 |
+
while True:
|
| 98 |
+
ret, frame = video_capture.read()
|
| 99 |
+
if not ret:
|
| 100 |
+
st.error("Error: Failed to read frame from video capture device.")
|
| 101 |
+
break
|
| 102 |
+
|
| 103 |
+
# Display the input stream
|
| 104 |
+
video_placeholder.image(frame, channels="BGR")
|
| 105 |
+
|
| 106 |
+
# Analyze sentiment
|
| 107 |
+
sentiment = analyze_sentiment(frame)
|
| 108 |
+
|
| 109 |
+
# Display the output stream (here it's the same as input, modify as needed)
|
| 110 |
+
output_placeholder.image(frame, channels="BGR")
|
| 111 |
+
|
| 112 |
+
# Display sentiment
|
| 113 |
+
sentiment_placeholder.write(f"Sentiment: {sentiment}")
|
| 114 |
+
|
| 115 |
+
# Add a short delay to control the frame rate
|
| 116 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 117 |
+
break
|
| 118 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
opencv-python-headless
|
| 3 |
+
numpy
|
| 4 |
+
transformers
|
| 5 |
+
torch
|
run_streamlist.sh
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
# Set Chrome as the default browser for this session
|
| 3 |
+
export BROWSER="/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
|
| 4 |
+
# Run Streamlit with the provided arguments
|
| 5 |
+
streamlit run "$@"
|