Changed to streamlit-webrtc object detection
Browse files- app.py +153 -136
- app.py.sentiment-one +0 -118
- object_detection.py +163 -0
- requirements.txt +1 -0
- run_streamlist.sh +0 -5
- app.py.safe → sentiment.py +56 -70
- utils/__init__.py +1 -0
- utils/download.py +50 -0
- utils/turn.py +39 -0
app.py
CHANGED
|
@@ -1,146 +1,163 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Analyze sentiment using the Hugging Face pipeline
|
| 24 |
-
results = emotion_pipeline(pil_image)
|
| 25 |
-
# Get the dominant emotion
|
| 26 |
-
dominant_emotion = max(results, key=lambda x: x['score'])['label']
|
| 27 |
-
return dominant_emotion
|
| 28 |
-
|
| 29 |
-
TEXT_SIZE = 3
|
| 30 |
-
|
| 31 |
-
# Function to detect faces, analyze sentiment, and draw a red box around them
|
| 32 |
-
def detect_and_draw_faces(frame):
|
| 33 |
-
# Detect faces using MTCNN
|
| 34 |
-
results = mtcnn.detect_faces(frame)
|
| 35 |
-
|
| 36 |
-
# Draw on the frame
|
| 37 |
-
for result in results:
|
| 38 |
-
x, y, w, h = result['box']
|
| 39 |
-
face = frame[y:y+h, x:x+w]
|
| 40 |
-
sentiment = analyze_sentiment(face)
|
| 41 |
-
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 10) # Thicker red box
|
| 42 |
-
|
| 43 |
-
# Calculate position for the text background and the text itself
|
| 44 |
-
text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[0]
|
| 45 |
-
text_x = x
|
| 46 |
-
text_y = y - 10
|
| 47 |
-
background_tl = (text_x, text_y - text_size[1])
|
| 48 |
-
background_br = (text_x + text_size[0], text_y + 5)
|
| 49 |
-
|
| 50 |
-
# Draw black rectangle as background
|
| 51 |
-
cv2.rectangle(frame, background_tl, background_br, (0, 0, 0), cv2.FILLED)
|
| 52 |
-
# Draw white text on top
|
| 53 |
-
cv2.putText(frame, sentiment, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, (255, 255, 255), 2)
|
| 54 |
-
|
| 55 |
-
return frame
|
| 56 |
-
|
| 57 |
-
# Function to capture video from webcam
|
| 58 |
-
def video_stream():
|
| 59 |
-
video_capture = cv2.VideoCapture(0)
|
| 60 |
-
if not video_capture.isOpened():
|
| 61 |
-
st.error("Error: Could not open video capture device.")
|
| 62 |
-
return
|
| 63 |
-
|
| 64 |
-
while True:
|
| 65 |
-
ret, frame = video_capture.read()
|
| 66 |
-
if not ret:
|
| 67 |
-
st.error("Error: Failed to read frame from video capture device.")
|
| 68 |
-
break
|
| 69 |
-
yield frame
|
| 70 |
-
|
| 71 |
-
video_capture.release()
|
| 72 |
-
|
| 73 |
-
# Streamlit UI
|
| 74 |
-
st.markdown(
|
| 75 |
-
"""
|
| 76 |
-
<style>
|
| 77 |
-
.main {
|
| 78 |
-
background-color: #FFFFFF;
|
| 79 |
-
}
|
| 80 |
-
.reportview-container .main .block-container{
|
| 81 |
-
padding-top: 2rem;
|
| 82 |
-
}
|
| 83 |
-
h1 {
|
| 84 |
-
color: #E60012;
|
| 85 |
-
font-family: 'Arial Black', Gadget, sans-serif;
|
| 86 |
-
}
|
| 87 |
-
h2 {
|
| 88 |
-
color: #E60012;
|
| 89 |
-
font-family: 'Arial', sans-serif;
|
| 90 |
-
}
|
| 91 |
-
h3 {
|
| 92 |
-
color: #333333;
|
| 93 |
-
font-family: 'Arial', sans-serif;
|
| 94 |
-
}
|
| 95 |
-
.stButton button {
|
| 96 |
-
background-color: #E60012;
|
| 97 |
-
color: white;
|
| 98 |
-
border-radius: 5px;
|
| 99 |
-
font-size: 16px;
|
| 100 |
-
}
|
| 101 |
-
</style>
|
| 102 |
-
""",
|
| 103 |
-
unsafe_allow_html=True
|
| 104 |
-
)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
# Columns for input and output streams
|
| 110 |
-
col1, col2 = st.columns(2)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 116 |
|
| 117 |
-
with col2:
|
| 118 |
-
st.header("Output Stream")
|
| 119 |
-
st.subheader("Analysis")
|
| 120 |
-
output_placeholder = st.empty()
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
else:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Object detection demo with MobileNet SSD.
|
| 2 |
+
This model and code are based on
|
| 3 |
+
https://github.com/robmarkcole/object-detection-app
|
| 4 |
+
"""
|
| 5 |
|
| 6 |
+
import logging
|
| 7 |
+
import queue
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List, NamedTuple
|
| 10 |
+
|
| 11 |
+
import av
|
| 12 |
import cv2
|
| 13 |
import numpy as np
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
| 16 |
+
|
| 17 |
+
from utils.download import download_file
|
| 18 |
+
from utils.turn import get_ice_servers
|
| 19 |
+
|
| 20 |
+
HERE = Path(__file__).parent
|
| 21 |
+
ROOT = HERE.parent
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
|
| 27 |
+
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
|
| 28 |
+
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
|
| 29 |
+
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
CLASSES = [
|
| 32 |
+
"background",
|
| 33 |
+
"aeroplane",
|
| 34 |
+
"bicycle",
|
| 35 |
+
"bird",
|
| 36 |
+
"boat",
|
| 37 |
+
"bottle",
|
| 38 |
+
"bus",
|
| 39 |
+
"car",
|
| 40 |
+
"cat",
|
| 41 |
+
"chair",
|
| 42 |
+
"cow",
|
| 43 |
+
"diningtable",
|
| 44 |
+
"dog",
|
| 45 |
+
"horse",
|
| 46 |
+
"motorbike",
|
| 47 |
+
"person",
|
| 48 |
+
"pottedplant",
|
| 49 |
+
"sheep",
|
| 50 |
+
"sofa",
|
| 51 |
+
"train",
|
| 52 |
+
"tvmonitor",
|
| 53 |
+
]
|
| 54 |
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
class Detection(NamedTuple):
|
| 57 |
+
class_id: int
|
| 58 |
+
label: str
|
| 59 |
+
score: float
|
| 60 |
+
box: np.ndarray
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
@st.cache_resource # type: ignore
|
| 64 |
+
def generate_label_colors():
|
| 65 |
+
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
| 66 |
|
| 67 |
+
|
| 68 |
+
COLORS = generate_label_colors()
|
| 69 |
+
|
| 70 |
+
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
| 71 |
+
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# Session-specific caching
|
| 75 |
+
cache_key = "object_detection_dnn"
|
| 76 |
+
if cache_key in st.session_state:
|
| 77 |
+
net = st.session_state[cache_key]
|
| 78 |
else:
|
| 79 |
+
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
| 80 |
+
st.session_state[cache_key] = net
|
| 81 |
+
|
| 82 |
+
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
| 83 |
+
|
| 84 |
+
# NOTE: The callback will be called in another thread,
|
| 85 |
+
# so use a queue here for thread-safety to pass the data
|
| 86 |
+
# from inside to outside the callback.
|
| 87 |
+
# TODO: A general-purpose shared state object may be more useful.
|
| 88 |
+
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
| 92 |
+
image = frame.to_ndarray(format="bgr24")
|
| 93 |
+
|
| 94 |
+
# Run inference
|
| 95 |
+
blob = cv2.dnn.blobFromImage(
|
| 96 |
+
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
| 97 |
+
)
|
| 98 |
+
net.setInput(blob)
|
| 99 |
+
output = net.forward()
|
| 100 |
+
|
| 101 |
+
h, w = image.shape[:2]
|
| 102 |
+
|
| 103 |
+
# Convert the output array into a structured form.
|
| 104 |
+
output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
|
| 105 |
+
output = output[output[:, 2] >= score_threshold]
|
| 106 |
+
detections = [
|
| 107 |
+
Detection(
|
| 108 |
+
class_id=int(detection[1]),
|
| 109 |
+
label=CLASSES[int(detection[1])],
|
| 110 |
+
score=float(detection[2]),
|
| 111 |
+
box=(detection[3:7] * np.array([w, h, w, h])),
|
| 112 |
+
)
|
| 113 |
+
for detection in output
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
# Render bounding boxes and captions
|
| 117 |
+
for detection in detections:
|
| 118 |
+
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
| 119 |
+
color = COLORS[detection.class_id]
|
| 120 |
+
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
| 121 |
+
|
| 122 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
| 123 |
+
cv2.putText(
|
| 124 |
+
image,
|
| 125 |
+
caption,
|
| 126 |
+
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
| 127 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 128 |
+
0.5,
|
| 129 |
+
color,
|
| 130 |
+
2,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
result_queue.put(detections)
|
| 134 |
+
|
| 135 |
+
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
webrtc_ctx = webrtc_streamer(
|
| 139 |
+
key="object-detection",
|
| 140 |
+
mode=WebRtcMode.SENDRECV,
|
| 141 |
+
rtc_configuration={"iceServers": get_ice_servers()},
|
| 142 |
+
video_frame_callback=video_frame_callback,
|
| 143 |
+
media_stream_constraints={"video": True, "audio": False},
|
| 144 |
+
async_processing=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if st.checkbox("Show the detected labels", value=True):
|
| 148 |
+
if webrtc_ctx.state.playing:
|
| 149 |
+
labels_placeholder = st.empty()
|
| 150 |
+
# NOTE: The video transformation with object detection and
|
| 151 |
+
# this loop displaying the result labels are running
|
| 152 |
+
# in different threads asynchronously.
|
| 153 |
+
# Then the rendered video frames and the labels displayed here
|
| 154 |
+
# are not strictly synchronized.
|
| 155 |
+
while True:
|
| 156 |
+
result = result_queue.get()
|
| 157 |
+
labels_placeholder.table(result)
|
| 158 |
+
|
| 159 |
+
st.markdown(
|
| 160 |
+
"This demo uses a model and code from "
|
| 161 |
+
"https://github.com/robmarkcole/object-detection-app. "
|
| 162 |
+
"Many thanks to the project."
|
| 163 |
+
)
|
app.py.sentiment-one
DELETED
|
@@ -1,118 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
os.environ['OPENCV_AVFOUNDATION_SKIP_AUTH'] = '1'
|
| 3 |
-
|
| 4 |
-
import streamlit as st
|
| 5 |
-
import cv2
|
| 6 |
-
from transformers import pipeline
|
| 7 |
-
from PIL import Image
|
| 8 |
-
|
| 9 |
-
# Initialize the Hugging Face pipeline for facial emotion detection
|
| 10 |
-
emotion_pipeline = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
|
| 11 |
-
|
| 12 |
-
# Function to analyze sentiment
|
| 13 |
-
def analyze_sentiment(frame):
|
| 14 |
-
# Convert frame to RGB
|
| 15 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 16 |
-
# Convert the frame to a PIL image
|
| 17 |
-
pil_image = Image.fromarray(rgb_frame)
|
| 18 |
-
# Analyze sentiment using the Hugging Face pipeline
|
| 19 |
-
results = emotion_pipeline(pil_image) # Analyze sentiment using the Hugging Face pipeline
|
| 20 |
-
results = emotion_pipeline(pil_image)
|
| 21 |
-
# Get the dominant emotion
|
| 22 |
-
dominant_emotion = max(results, key=lambda x: x['score'])['label']
|
| 23 |
-
return dominant_emotion
|
| 24 |
-
|
| 25 |
-
# Function to capture video from webcam
|
| 26 |
-
def video_stream():
|
| 27 |
-
video_capture = cv2.VideoCapture(0)
|
| 28 |
-
if not video_capture.isOpened():
|
| 29 |
-
st.error("Error: Could not open video capture device.")
|
| 30 |
-
return
|
| 31 |
-
|
| 32 |
-
while True:
|
| 33 |
-
ret, frame = video_capture.read()
|
| 34 |
-
if not ret:
|
| 35 |
-
st.error("Error: Failed to read frame from video capture device.")
|
| 36 |
-
break
|
| 37 |
-
yield frame
|
| 38 |
-
|
| 39 |
-
video_capture.release()
|
| 40 |
-
|
| 41 |
-
# Streamlit UI
|
| 42 |
-
st.markdown(
|
| 43 |
-
"""
|
| 44 |
-
<style>
|
| 45 |
-
.main {
|
| 46 |
-
background-color: #FFFFFF;
|
| 47 |
-
}
|
| 48 |
-
.reportview-container .main .block-container{
|
| 49 |
-
padding-top: 2rem;
|
| 50 |
-
}
|
| 51 |
-
h1 {
|
| 52 |
-
color: #E60012;
|
| 53 |
-
font-family: 'Arial Black', Gadget, sans-serif;
|
| 54 |
-
}
|
| 55 |
-
h2 {
|
| 56 |
-
color: #E60012;
|
| 57 |
-
font-family: 'Arial', sans-serif;
|
| 58 |
-
}
|
| 59 |
-
h3 {
|
| 60 |
-
color: #333333;
|
| 61 |
-
font-family: 'Arial', sans-serif;
|
| 62 |
-
}
|
| 63 |
-
.stButton button {
|
| 64 |
-
background-color: #E60012;
|
| 65 |
-
color: white;
|
| 66 |
-
border-radius: 5px;
|
| 67 |
-
font-size: 16px;
|
| 68 |
-
}
|
| 69 |
-
</style>
|
| 70 |
-
""",
|
| 71 |
-
unsafe_allow_html=True
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
st.title("Computer Vision Test Lab")
|
| 75 |
-
st.subheader("Facial Sentiment")
|
| 76 |
-
|
| 77 |
-
# Columns for input and output streams
|
| 78 |
-
col1, col2 = st.columns(2)
|
| 79 |
-
|
| 80 |
-
with col1:
|
| 81 |
-
st.header("Input Stream")
|
| 82 |
-
st.subheader("Webcam")
|
| 83 |
-
video_placeholder = st.empty()
|
| 84 |
-
|
| 85 |
-
with col2:
|
| 86 |
-
st.header("Output Stream")
|
| 87 |
-
st.subheader("Analysis")
|
| 88 |
-
output_placeholder = st.empty()
|
| 89 |
-
|
| 90 |
-
sentiment_placeholder = st.empty()
|
| 91 |
-
|
| 92 |
-
# Start video stream
|
| 93 |
-
video_capture = cv2.VideoCapture(0)
|
| 94 |
-
if not video_capture.isOpened():
|
| 95 |
-
st.error("Error: Could not open video capture device.")
|
| 96 |
-
else:
|
| 97 |
-
while True:
|
| 98 |
-
ret, frame = video_capture.read()
|
| 99 |
-
if not ret:
|
| 100 |
-
st.error("Error: Failed to read frame from video capture device.")
|
| 101 |
-
break
|
| 102 |
-
|
| 103 |
-
# Display the input stream
|
| 104 |
-
video_placeholder.image(frame, channels="BGR")
|
| 105 |
-
|
| 106 |
-
# Analyze sentiment
|
| 107 |
-
sentiment = analyze_sentiment(frame)
|
| 108 |
-
|
| 109 |
-
# Display the output stream (here it's the same as input, modify as needed)
|
| 110 |
-
output_placeholder.image(frame, channels="BGR")
|
| 111 |
-
|
| 112 |
-
# Display sentiment
|
| 113 |
-
sentiment_placeholder.write(f"Sentiment: {sentiment}")
|
| 114 |
-
|
| 115 |
-
# Add a short delay to control the frame rate
|
| 116 |
-
if cv2.waitKey(1) & 0xFF == ord('q'):
|
| 117 |
-
break
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
object_detection.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Object detection demo with MobileNet SSD.
|
| 2 |
+
This model and code are based on
|
| 3 |
+
https://github.com/robmarkcole/object-detection-app
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import logging
|
| 7 |
+
import queue
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List, NamedTuple
|
| 10 |
+
|
| 11 |
+
import av
|
| 12 |
+
import cv2
|
| 13 |
+
import numpy as np
|
| 14 |
+
import streamlit as st
|
| 15 |
+
from streamlit_webrtc import WebRtcMode, webrtc_streamer
|
| 16 |
+
|
| 17 |
+
from utils.download import download_file
|
| 18 |
+
from utils.turn import get_ice_servers
|
| 19 |
+
|
| 20 |
+
HERE = Path(__file__).parent
|
| 21 |
+
ROOT = HERE.parent
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
|
| 27 |
+
MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
|
| 28 |
+
PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
|
| 29 |
+
PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
|
| 30 |
+
|
| 31 |
+
CLASSES = [
|
| 32 |
+
"background",
|
| 33 |
+
"aeroplane",
|
| 34 |
+
"bicycle",
|
| 35 |
+
"bird",
|
| 36 |
+
"boat",
|
| 37 |
+
"bottle",
|
| 38 |
+
"bus",
|
| 39 |
+
"car",
|
| 40 |
+
"cat",
|
| 41 |
+
"chair",
|
| 42 |
+
"cow",
|
| 43 |
+
"diningtable",
|
| 44 |
+
"dog",
|
| 45 |
+
"horse",
|
| 46 |
+
"motorbike",
|
| 47 |
+
"person",
|
| 48 |
+
"pottedplant",
|
| 49 |
+
"sheep",
|
| 50 |
+
"sofa",
|
| 51 |
+
"train",
|
| 52 |
+
"tvmonitor",
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Detection(NamedTuple):
|
| 57 |
+
class_id: int
|
| 58 |
+
label: str
|
| 59 |
+
score: float
|
| 60 |
+
box: np.ndarray
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@st.cache_resource # type: ignore
|
| 64 |
+
def generate_label_colors():
|
| 65 |
+
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
COLORS = generate_label_colors()
|
| 69 |
+
|
| 70 |
+
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
| 71 |
+
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# Session-specific caching
|
| 75 |
+
cache_key = "object_detection_dnn"
|
| 76 |
+
if cache_key in st.session_state:
|
| 77 |
+
net = st.session_state[cache_key]
|
| 78 |
+
else:
|
| 79 |
+
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
| 80 |
+
st.session_state[cache_key] = net
|
| 81 |
+
|
| 82 |
+
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
| 83 |
+
|
| 84 |
+
# NOTE: The callback will be called in another thread,
|
| 85 |
+
# so use a queue here for thread-safety to pass the data
|
| 86 |
+
# from inside to outside the callback.
|
| 87 |
+
# TODO: A general-purpose shared state object may be more useful.
|
| 88 |
+
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
| 92 |
+
image = frame.to_ndarray(format="bgr24")
|
| 93 |
+
|
| 94 |
+
# Run inference
|
| 95 |
+
blob = cv2.dnn.blobFromImage(
|
| 96 |
+
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
| 97 |
+
)
|
| 98 |
+
net.setInput(blob)
|
| 99 |
+
output = net.forward()
|
| 100 |
+
|
| 101 |
+
h, w = image.shape[:2]
|
| 102 |
+
|
| 103 |
+
# Convert the output array into a structured form.
|
| 104 |
+
output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
|
| 105 |
+
output = output[output[:, 2] >= score_threshold]
|
| 106 |
+
detections = [
|
| 107 |
+
Detection(
|
| 108 |
+
class_id=int(detection[1]),
|
| 109 |
+
label=CLASSES[int(detection[1])],
|
| 110 |
+
score=float(detection[2]),
|
| 111 |
+
box=(detection[3:7] * np.array([w, h, w, h])),
|
| 112 |
+
)
|
| 113 |
+
for detection in output
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
# Render bounding boxes and captions
|
| 117 |
+
for detection in detections:
|
| 118 |
+
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
| 119 |
+
color = COLORS[detection.class_id]
|
| 120 |
+
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
| 121 |
+
|
| 122 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
| 123 |
+
cv2.putText(
|
| 124 |
+
image,
|
| 125 |
+
caption,
|
| 126 |
+
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
| 127 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 128 |
+
0.5,
|
| 129 |
+
color,
|
| 130 |
+
2,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
result_queue.put(detections)
|
| 134 |
+
|
| 135 |
+
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
webrtc_ctx = webrtc_streamer(
|
| 139 |
+
key="object-detection",
|
| 140 |
+
mode=WebRtcMode.SENDRECV,
|
| 141 |
+
rtc_configuration={"iceServers": get_ice_servers()},
|
| 142 |
+
video_frame_callback=video_frame_callback,
|
| 143 |
+
media_stream_constraints={"video": True, "audio": False},
|
| 144 |
+
async_processing=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if st.checkbox("Show the detected labels", value=True):
|
| 148 |
+
if webrtc_ctx.state.playing:
|
| 149 |
+
labels_placeholder = st.empty()
|
| 150 |
+
# NOTE: The video transformation with object detection and
|
| 151 |
+
# this loop displaying the result labels are running
|
| 152 |
+
# in different threads asynchronously.
|
| 153 |
+
# Then the rendered video frames and the labels displayed here
|
| 154 |
+
# are not strictly synchronized.
|
| 155 |
+
while True:
|
| 156 |
+
result = result_queue.get()
|
| 157 |
+
labels_placeholder.table(result)
|
| 158 |
+
|
| 159 |
+
st.markdown(
|
| 160 |
+
"This demo uses a model and code from "
|
| 161 |
+
"https://github.com/robmarkcole/object-detection-app. "
|
| 162 |
+
"Many thanks to the project."
|
| 163 |
+
)
|
requirements.txt
CHANGED
|
@@ -7,3 +7,4 @@ mtcnn
|
|
| 7 |
setuptools
|
| 8 |
tensorflow
|
| 9 |
tf-keras
|
|
|
|
|
|
| 7 |
setuptools
|
| 8 |
tensorflow
|
| 9 |
tf-keras
|
| 10 |
+
streamlit_webrtc
|
run_streamlist.sh
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# Set Chrome as the default browser for this session
|
| 3 |
-
export BROWSER="/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
|
| 4 |
-
# Run Streamlit with the provided arguments
|
| 5 |
-
streamlit run "$@"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py.safe → sentiment.py
RENAMED
|
@@ -1,15 +1,27 @@
|
|
| 1 |
-
import
|
| 2 |
-
os.environ['OPENCV_AVFOUNDATION_SKIP_AUTH'] = '1'
|
| 3 |
|
| 4 |
import streamlit as st
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
from transformers import pipeline
|
| 8 |
from PIL import Image, ImageDraw
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression")
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
# Function to analyze sentiment
|
| 14 |
def analyze_sentiment(face):
|
| 15 |
# Convert face to RGB
|
|
@@ -26,58 +38,29 @@ TEXT_SIZE = 3
|
|
| 26 |
|
| 27 |
# Function to detect faces, analyze sentiment, and draw a red box around them
|
| 28 |
def detect_and_draw_faces(frame):
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
# Convert the frame to a PIL image
|
| 32 |
-
pil_image = Image.fromarray(rgb_frame)
|
| 33 |
-
# Analyze sentiment using the Hugging Face pipeline
|
| 34 |
-
results = emotion_pipeline(pil_image)
|
| 35 |
-
|
| 36 |
-
# Print the results to understand the structure
|
| 37 |
-
print(results)
|
| 38 |
|
| 39 |
-
# Draw on the
|
| 40 |
-
draw = ImageDraw.Draw(pil_image)
|
| 41 |
-
|
| 42 |
-
# Iterate through detected faces
|
| 43 |
for result in results:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
#
|
| 48 |
-
x, y, w, h = box['left'], box['top'], box['width'], box['height']
|
| 49 |
-
draw.rectangle(((x, y), (x+w, y+h)), outline="red", width=3)
|
| 50 |
|
| 51 |
# Calculate position for the text background and the text itself
|
| 52 |
-
text_size =
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Draw black rectangle as background
|
| 57 |
-
|
| 58 |
# Draw white text on top
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
# Convert back to OpenCV format
|
| 62 |
-
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 63 |
|
| 64 |
-
return
|
| 65 |
-
|
| 66 |
-
# Function to capture video from webcam
|
| 67 |
-
def video_stream():
|
| 68 |
-
video_capture = cv2.VideoCapture(0)
|
| 69 |
-
if not video_capture.isOpened():
|
| 70 |
-
st.error("Error: Could not open video capture device.")
|
| 71 |
-
return
|
| 72 |
-
|
| 73 |
-
while True:
|
| 74 |
-
ret, frame = video_capture.read()
|
| 75 |
-
if not ret:
|
| 76 |
-
st.error("Error: Failed to read frame from video capture device.")
|
| 77 |
-
break
|
| 78 |
-
yield frame
|
| 79 |
-
|
| 80 |
-
video_capture.release()
|
| 81 |
|
| 82 |
# Streamlit UI
|
| 83 |
st.markdown(
|
|
@@ -130,26 +113,29 @@ with col2:
|
|
| 130 |
|
| 131 |
sentiment_placeholder = st.empty()
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
| 6 |
from transformers import pipeline
|
| 7 |
from PIL import Image, ImageDraw
|
| 8 |
+
from mtcnn import MTCNN
|
| 9 |
+
from streamlit_webrtc import webrtc_streamer
|
| 10 |
+
import logging
|
| 11 |
|
| 12 |
+
# Suppress transformers progress bars
|
| 13 |
+
logging.getLogger("transformers").setLevel(logging.ERROR)
|
| 14 |
+
|
| 15 |
+
lock = threading.Lock()
|
| 16 |
+
img_container = {"webcam": None,
|
| 17 |
+
"analzyed": None}
|
| 18 |
+
|
| 19 |
+
# Initialize the Hugging Face pipeline for facial emotion detection
|
| 20 |
emotion_pipeline = pipeline("image-classification", model="trpakov/vit-face-expression")
|
| 21 |
|
| 22 |
+
# Initialize MTCNN for face detection
|
| 23 |
+
mtcnn = MTCNN()
|
| 24 |
+
|
| 25 |
# Function to analyze sentiment
|
| 26 |
def analyze_sentiment(face):
|
| 27 |
# Convert face to RGB
|
|
|
|
| 38 |
|
| 39 |
# Function to detect faces, analyze sentiment, and draw a red box around them
|
| 40 |
def detect_and_draw_faces(frame):
|
| 41 |
+
# Detect faces using MTCNN
|
| 42 |
+
results = mtcnn.detect_faces(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Draw on the frame
|
|
|
|
|
|
|
|
|
|
| 45 |
for result in results:
|
| 46 |
+
x, y, w, h = result['box']
|
| 47 |
+
face = frame[y:y+h, x:x+w]
|
| 48 |
+
sentiment = analyze_sentiment(face)
|
| 49 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 10) # Thicker red box
|
|
|
|
|
|
|
| 50 |
|
| 51 |
# Calculate position for the text background and the text itself
|
| 52 |
+
text_size = cv2.getTextSize(sentiment, cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, 2)[0]
|
| 53 |
+
text_x = x
|
| 54 |
+
text_y = y - 10
|
| 55 |
+
background_tl = (text_x, text_y - text_size[1])
|
| 56 |
+
background_br = (text_x + text_size[0], text_y + 5)
|
| 57 |
|
| 58 |
# Draw black rectangle as background
|
| 59 |
+
cv2.rectangle(frame, background_tl, background_br, (0, 0, 0), cv2.FILLED)
|
| 60 |
# Draw white text on top
|
| 61 |
+
cv2.putText(frame, sentiment, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, TEXT_SIZE, (255, 255, 255), 2)
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
return frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Streamlit UI
|
| 66 |
st.markdown(
|
|
|
|
| 113 |
|
| 114 |
sentiment_placeholder = st.empty()
|
| 115 |
|
| 116 |
+
def video_frame_callback(frame):
|
| 117 |
+
try:
|
| 118 |
+
with lock:
|
| 119 |
+
img = frame.to_ndarray(format="bgr24")
|
| 120 |
+
img_container["webcam"] = img
|
| 121 |
+
frame_with_boxes = detect_and_draw_faces(img)
|
| 122 |
+
img_container["analyzed"] = frame_with_boxes
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
st.error(f"Error processing frame: {e}")
|
| 126 |
+
|
| 127 |
+
return frame
|
| 128 |
+
|
| 129 |
+
ctx = webrtc_streamer(key="webcam", video_frame_callback=video_frame_callback)
|
| 130 |
+
|
| 131 |
+
while ctx.state.playing:
|
| 132 |
+
with lock:
|
| 133 |
+
print(img_container)
|
| 134 |
+
img = img_container["webcam"]
|
| 135 |
+
frame_with_boxes = img_container["analyzed"]
|
| 136 |
+
|
| 137 |
+
if img is None:
|
| 138 |
+
continue
|
| 139 |
+
|
| 140 |
+
video_placeholder.image(img, channels="BGR")
|
| 141 |
+
output_placeholder.image(frame_with_boxes, channels="BGR")
|
utils/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
utils/download.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import urllib.request
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# This code is based on https://github.com/streamlit/demo-self-driving/blob/230245391f2dda0cb464008195a470751c01770b/streamlit_app.py#L48 # noqa: E501
|
| 8 |
+
def download_file(url, download_to: Path, expected_size=None):
|
| 9 |
+
# Don't download the file twice.
|
| 10 |
+
# (If possible, verify the download using the file length.)
|
| 11 |
+
if download_to.exists():
|
| 12 |
+
if expected_size:
|
| 13 |
+
if download_to.stat().st_size == expected_size:
|
| 14 |
+
return
|
| 15 |
+
else:
|
| 16 |
+
st.info(f"{url} is already downloaded.")
|
| 17 |
+
if not st.button("Download again?"):
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
download_to.parent.mkdir(parents=True, exist_ok=True)
|
| 21 |
+
|
| 22 |
+
# These are handles to two visual elements to animate.
|
| 23 |
+
weights_warning, progress_bar = None, None
|
| 24 |
+
try:
|
| 25 |
+
weights_warning = st.warning("Downloading %s..." % url)
|
| 26 |
+
progress_bar = st.progress(0)
|
| 27 |
+
with open(download_to, "wb") as output_file:
|
| 28 |
+
with urllib.request.urlopen(url) as response:
|
| 29 |
+
length = int(response.info()["Content-Length"])
|
| 30 |
+
counter = 0.0
|
| 31 |
+
MEGABYTES = 2.0**20.0
|
| 32 |
+
while True:
|
| 33 |
+
data = response.read(8192)
|
| 34 |
+
if not data:
|
| 35 |
+
break
|
| 36 |
+
counter += len(data)
|
| 37 |
+
output_file.write(data)
|
| 38 |
+
|
| 39 |
+
# We perform animation by overwriting the elements.
|
| 40 |
+
weights_warning.warning(
|
| 41 |
+
"Downloading %s... (%6.2f/%6.2f MB)"
|
| 42 |
+
% (url, counter / MEGABYTES, length / MEGABYTES)
|
| 43 |
+
)
|
| 44 |
+
progress_bar.progress(min(counter / length, 1.0))
|
| 45 |
+
# Finally, we remove these visual elements by calling .empty().
|
| 46 |
+
finally:
|
| 47 |
+
if weights_warning is not None:
|
| 48 |
+
weights_warning.empty()
|
| 49 |
+
if progress_bar is not None:
|
| 50 |
+
progress_bar.empty()
|
utils/turn.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from twilio.base.exceptions import TwilioRestException
|
| 6 |
+
from twilio.rest import Client
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_ice_servers():
|
| 12 |
+
"""Use Twilio's TURN server because Streamlit Community Cloud has changed
|
| 13 |
+
its infrastructure and WebRTC connection cannot be established without TURN server now. # noqa: E501
|
| 14 |
+
We considered Open Relay Project (https://www.metered.ca/tools/openrelay/) too,
|
| 15 |
+
but it is not stable and hardly works as some people reported like https://github.com/aiortc/aiortc/issues/832#issuecomment-1482420656 # noqa: E501
|
| 16 |
+
See https://github.com/whitphx/streamlit-webrtc/issues/1213
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
# Ref: https://www.twilio.com/docs/stun-turn/api
|
| 20 |
+
try:
|
| 21 |
+
account_sid = os.environ["TWILIO_ACCOUNT_SID"]
|
| 22 |
+
auth_token = os.environ["TWILIO_AUTH_TOKEN"]
|
| 23 |
+
except KeyError:
|
| 24 |
+
logger.warning(
|
| 25 |
+
"Twilio credentials are not set. Fallback to a free STUN server from Google." # noqa: E501
|
| 26 |
+
)
|
| 27 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
| 28 |
+
|
| 29 |
+
client = Client(account_sid, auth_token)
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
token = client.tokens.create()
|
| 33 |
+
except TwilioRestException as e:
|
| 34 |
+
st.warning(
|
| 35 |
+
f"Error occurred while accessing Twilio API. Fallback to a free STUN server from Google. ({e})" # noqa: E501
|
| 36 |
+
)
|
| 37 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
| 38 |
+
|
| 39 |
+
return token.ice_servers
|