Update app.py
Browse files
app.py
CHANGED
|
@@ -2,13 +2,11 @@ import json
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
| 5 |
-
import pyarrow.parquet as pq
|
| 6 |
import os
|
| 7 |
-
import requests
|
| 8 |
-
from io import BytesIO
|
| 9 |
import numpy as np
|
|
|
|
| 10 |
|
| 11 |
-
# Define pipeline tags
|
| 12 |
PIPELINE_TAGS = [
|
| 13 |
'text-generation',
|
| 14 |
'text-to-image',
|
|
@@ -59,61 +57,63 @@ MODEL_SIZE_RANGES = {
|
|
| 59 |
"XX-Large (>50GB)": (50, float('inf'))
|
| 60 |
}
|
| 61 |
|
| 62 |
-
# Filter functions for tags
|
| 63 |
-
def is_audio_speech(
|
| 64 |
-
tags =
|
| 65 |
-
pipeline_tag =
|
| 66 |
|
| 67 |
return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
|
| 68 |
any("audio" in tag.lower() for tag in tags) or \
|
| 69 |
any("speech" in tag.lower() for tag in tags)
|
| 70 |
|
| 71 |
-
def is_music(
|
| 72 |
-
tags =
|
| 73 |
return any("music" in tag.lower() for tag in tags)
|
| 74 |
|
| 75 |
-
def is_robotics(
|
| 76 |
-
tags =
|
| 77 |
return any("robot" in tag.lower() for tag in tags)
|
| 78 |
|
| 79 |
-
def is_biomed(
|
| 80 |
-
tags =
|
| 81 |
return any("bio" in tag.lower() for tag in tags) or \
|
| 82 |
any("medic" in tag.lower() for tag in tags)
|
| 83 |
|
| 84 |
-
def is_timeseries(
|
| 85 |
-
tags =
|
| 86 |
return any("series" in tag.lower() for tag in tags)
|
| 87 |
|
| 88 |
-
def is_science(
|
| 89 |
-
tags =
|
| 90 |
return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)
|
| 91 |
|
| 92 |
-
def is_video(
|
| 93 |
-
tags =
|
| 94 |
return any("video" in tag.lower() for tag in tags)
|
| 95 |
|
| 96 |
-
def is_image(
|
| 97 |
-
tags =
|
| 98 |
return any("image" in tag.lower() for tag in tags)
|
| 99 |
|
| 100 |
-
def is_text(
|
| 101 |
-
tags =
|
| 102 |
return any("text" in tag.lower() for tag in tags)
|
| 103 |
|
| 104 |
# Add model size filter function
|
| 105 |
-
def is_in_size_range(
|
| 106 |
if size_range is None:
|
| 107 |
return True
|
| 108 |
|
| 109 |
min_size, max_size = MODEL_SIZE_RANGES[size_range]
|
| 110 |
|
| 111 |
-
# Get model size in GB from
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
| 117 |
|
| 118 |
return False
|
| 119 |
|
|
@@ -198,7 +198,8 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
| 198 |
treemap_data,
|
| 199 |
path=["root", "organization", "id"],
|
| 200 |
values=count_by,
|
| 201 |
-
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization"
|
|
|
|
| 202 |
)
|
| 203 |
|
| 204 |
# Update layout
|
|
@@ -214,133 +215,34 @@ def create_treemap(treemap_data, count_by, title=None):
|
|
| 214 |
|
| 215 |
return fig
|
| 216 |
|
| 217 |
-
def
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
# If content length is unknown, we can't show accurate progress
|
| 227 |
-
if progress is not None:
|
| 228 |
-
progress(0, "Starting download...")
|
| 229 |
-
|
| 230 |
-
for chunk in response.iter_content(block_size):
|
| 231 |
-
data.write(chunk)
|
| 232 |
-
if progress is not None:
|
| 233 |
-
progress(0, f"Downloading... (unknown size)")
|
| 234 |
-
else:
|
| 235 |
-
downloaded = 0
|
| 236 |
-
for chunk in response.iter_content(block_size):
|
| 237 |
-
downloaded += len(chunk)
|
| 238 |
-
data.write(chunk)
|
| 239 |
-
if progress is not None:
|
| 240 |
-
percent = int(100 * downloaded / total_size)
|
| 241 |
-
progress(percent / 100, f"Downloading... {percent}% ({downloaded//(1024*1024)}MB/{total_size//(1024*1024)}MB)")
|
| 242 |
-
|
| 243 |
-
return data.getvalue()
|
| 244 |
-
except Exception as e:
|
| 245 |
-
print(f"Error in download_with_progress: {e}")
|
| 246 |
-
raise
|
| 247 |
-
|
| 248 |
-
def update_progress(progress_obj, value, description):
|
| 249 |
-
"""Safely update progress with error handling"""
|
| 250 |
-
try:
|
| 251 |
-
if progress_obj is not None:
|
| 252 |
-
progress_obj(value, description)
|
| 253 |
-
except Exception as e:
|
| 254 |
-
print(f"Error updating progress: {e}")
|
| 255 |
-
|
| 256 |
-
def download_and_process_models(progress=None):
|
| 257 |
-
"""Download and process the models data from HuggingFace dataset with progress tracking"""
|
| 258 |
-
try:
|
| 259 |
-
# Create a cache directory
|
| 260 |
-
if not os.path.exists('data'):
|
| 261 |
-
os.makedirs('data')
|
| 262 |
-
|
| 263 |
-
# Check if we have cached data
|
| 264 |
-
if os.path.exists('data/processed_models.parquet'):
|
| 265 |
-
update_progress(progress, 1.0, "Loading from cache...")
|
| 266 |
-
print("Loading models from cache...")
|
| 267 |
-
df = pd.read_parquet('data/processed_models.parquet')
|
| 268 |
-
return df
|
| 269 |
|
| 270 |
-
#
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
print(f"Downloading models data from {url}...")
|
| 275 |
-
|
| 276 |
-
try:
|
| 277 |
-
# Download with progress tracking
|
| 278 |
-
file_content = download_with_progress(url, progress)
|
| 279 |
-
|
| 280 |
-
update_progress(progress, 0.9, "Parsing parquet file...")
|
| 281 |
-
|
| 282 |
-
# Read the parquet file
|
| 283 |
-
table = pq.read_table(BytesIO(file_content))
|
| 284 |
-
df = table.to_pandas()
|
| 285 |
-
|
| 286 |
-
print(f"Downloaded {len(df)} models")
|
| 287 |
-
|
| 288 |
-
update_progress(progress, 0.95, "Processing data...")
|
| 289 |
-
|
| 290 |
-
# Process the safetensors column if it's a string (JSON)
|
| 291 |
-
if 'safetensors' in df.columns:
|
| 292 |
-
def parse_safetensors(val):
|
| 293 |
-
if isinstance(val, str):
|
| 294 |
-
try:
|
| 295 |
-
return json.loads(val)
|
| 296 |
-
except:
|
| 297 |
-
return None
|
| 298 |
-
return val
|
| 299 |
-
|
| 300 |
-
df['safetensors'] = df['safetensors'].apply(parse_safetensors)
|
| 301 |
-
|
| 302 |
-
# Process the tags column if needed
|
| 303 |
-
if 'tags' in df.columns and len(df) > 0 and not isinstance(df['tags'].iloc[0], list):
|
| 304 |
-
def parse_tags(val):
|
| 305 |
-
if isinstance(val, str):
|
| 306 |
-
try:
|
| 307 |
-
return json.loads(val)
|
| 308 |
-
except:
|
| 309 |
-
return []
|
| 310 |
-
return val if isinstance(val, list) else []
|
| 311 |
-
|
| 312 |
-
df['tags'] = df['tags'].apply(parse_tags)
|
| 313 |
-
|
| 314 |
-
# Cache the processed data
|
| 315 |
-
update_progress(progress, 0.98, "Saving to cache...")
|
| 316 |
-
df.to_parquet('data/processed_models.parquet')
|
| 317 |
-
|
| 318 |
-
update_progress(progress, 1.0, "Data ready!")
|
| 319 |
-
|
| 320 |
-
return df
|
| 321 |
-
|
| 322 |
-
except Exception as download_error:
|
| 323 |
-
print(f"Download failed: {download_error}")
|
| 324 |
-
update_progress(progress, 0.5, "Download failed, generating sample data...")
|
| 325 |
-
return create_sample_data(progress)
|
| 326 |
|
| 327 |
-
|
| 328 |
-
print(f"Error downloading or processing data: {e}")
|
| 329 |
-
update_progress(progress, 1.0, "Using sample data (error occurred)")
|
| 330 |
-
# Return sample data for testing if real data unavailable
|
| 331 |
-
return create_sample_data(progress)
|
| 332 |
-
|
| 333 |
-
def create_sample_data(progress=None):
|
| 334 |
-
"""Create sample data for testing when real data is unavailable"""
|
| 335 |
-
print("Creating sample data for testing...")
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface',
|
| 342 |
'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together',
|
| 343 |
-
'facebook', 'amazon', 'deepmind', 'cohere', '
|
| 344 |
|
| 345 |
# Common model name formats
|
| 346 |
model_name_patterns = [
|
|
@@ -366,13 +268,10 @@ def create_sample_data(progress=None):
|
|
| 366 |
variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"]
|
| 367 |
|
| 368 |
# Generate sample data
|
| 369 |
-
|
| 370 |
-
total_models = sum(np.random.randint(5, 20) for _ in orgs)
|
| 371 |
-
models_created = 0
|
| 372 |
-
|
| 373 |
for org_idx, org in enumerate(orgs):
|
| 374 |
-
# Create 5-
|
| 375 |
-
num_models = np.random.randint(5,
|
| 376 |
|
| 377 |
for i in range(num_models):
|
| 378 |
# Create realistic model name
|
|
@@ -428,11 +327,11 @@ def create_sample_data(progress=None):
|
|
| 428 |
# Generate downloads and likes (weighted by org position for variety)
|
| 429 |
# Earlier orgs get more downloads to make the visualization interesting
|
| 430 |
popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0
|
| 431 |
-
base_downloads =
|
| 432 |
downloads = int(base_downloads * np.random.uniform(0.3, 3.0))
|
| 433 |
likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio
|
| 434 |
|
| 435 |
-
# Generate model size (in bytes for
|
| 436 |
# Model size should correlate somewhat with the size in the name
|
| 437 |
size_indicator = 1
|
| 438 |
for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]:
|
|
@@ -440,53 +339,31 @@ def create_sample_data(progress=None):
|
|
| 440 |
size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3
|
| 441 |
break
|
| 442 |
|
| 443 |
-
# Size in
|
| 444 |
-
|
| 445 |
-
if size_gb > 50: # Cap at 100GB
|
| 446 |
-
size_gb = min(size_gb, 100)
|
| 447 |
-
size_bytes = int(size_gb * 1e9)
|
| 448 |
|
| 449 |
# Create model entry
|
| 450 |
model = {
|
| 451 |
"id": model_id,
|
|
|
|
| 452 |
"downloads": downloads,
|
| 453 |
-
"downloadsAllTime": int(downloads * np.random.uniform(1.5, 3.0)), # All-time higher than recent
|
| 454 |
"likes": likes,
|
| 455 |
"pipeline_tag": pipeline_tag,
|
| 456 |
"tags": tags,
|
| 457 |
-
"
|
| 458 |
}
|
| 459 |
|
| 460 |
-
|
| 461 |
-
models_created += 1
|
| 462 |
-
|
| 463 |
-
if progress and i % 5 == 0:
|
| 464 |
-
progress(0.3 + 0.6 * (models_created / total_models), f"Created {models_created}/{total_models} sample models...")
|
| 465 |
-
|
| 466 |
-
# Convert to DataFrame
|
| 467 |
-
df = pd.DataFrame(data)
|
| 468 |
-
|
| 469 |
-
if progress:
|
| 470 |
-
progress(0.95, "Finalizing sample data...")
|
| 471 |
|
| 472 |
-
|
|
|
|
|
|
|
| 473 |
|
| 474 |
# Create Gradio interface
|
| 475 |
with gr.Blocks() as demo:
|
| 476 |
models_data = gr.State() # To store loaded data
|
| 477 |
|
| 478 |
-
|
| 479 |
-
with gr.Row(visible=True) as loading_screen:
|
| 480 |
-
with gr.Column(scale=1):
|
| 481 |
-
gr.Markdown("""
|
| 482 |
-
# HuggingFace Models TreeMap Visualization
|
| 483 |
-
|
| 484 |
-
Loading data... This might take a moment.
|
| 485 |
-
""")
|
| 486 |
-
data_loading_progress = gr.Progress()
|
| 487 |
-
|
| 488 |
-
# Main application components (initially hidden)
|
| 489 |
-
with gr.Row(visible=False) as main_app:
|
| 490 |
gr.Markdown("""
|
| 491 |
# HuggingFace Models TreeMap Visualization
|
| 492 |
|
|
@@ -496,11 +373,11 @@ with gr.Blocks() as demo:
|
|
| 496 |
The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes).
|
| 497 |
""")
|
| 498 |
|
| 499 |
-
with gr.Row(
|
| 500 |
with gr.Column(scale=1):
|
| 501 |
count_by_dropdown = gr.Dropdown(
|
| 502 |
label="Metric",
|
| 503 |
-
choices=["downloads", "
|
| 504 |
value="downloads",
|
| 505 |
info="Select the metric to determine box sizes"
|
| 506 |
)
|
|
@@ -532,7 +409,7 @@ with gr.Blocks() as demo:
|
|
| 532 |
label="Model Size Filter",
|
| 533 |
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
|
| 534 |
value="None",
|
| 535 |
-
info="Filter models by their size (
|
| 536 |
)
|
| 537 |
|
| 538 |
top_k_slider = gr.Slider(
|
|
@@ -623,17 +500,11 @@ with gr.Blocks() as demo:
|
|
| 623 |
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
|
| 624 |
)
|
| 625 |
|
| 626 |
-
|
| 627 |
-
"""Load data with progress tracking and update UI visibility"""
|
| 628 |
-
data_df = download_and_process_models(progress)
|
| 629 |
-
# Return both the data and the visibility updates
|
| 630 |
-
return data_df, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 631 |
-
|
| 632 |
-
# Load data once at startup with progress bar
|
| 633 |
demo.load(
|
| 634 |
-
fn=
|
| 635 |
inputs=[],
|
| 636 |
-
outputs=[models_data
|
| 637 |
)
|
| 638 |
|
| 639 |
# Button click event to generate plot
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
|
|
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
+
import io
|
| 8 |
|
| 9 |
+
# Define pipeline tags
|
| 10 |
PIPELINE_TAGS = [
|
| 11 |
'text-generation',
|
| 12 |
'text-to-image',
|
|
|
|
| 57 |
"XX-Large (>50GB)": (50, float('inf'))
|
| 58 |
}
|
| 59 |
|
| 60 |
+
# Filter functions for tags
|
| 61 |
+
def is_audio_speech(row):
|
| 62 |
+
tags = row.get("tags", [])
|
| 63 |
+
pipeline_tag = row.get("pipeline_tag", "")
|
| 64 |
|
| 65 |
return (pipeline_tag and ("audio" in pipeline_tag.lower() or "speech" in pipeline_tag.lower())) or \
|
| 66 |
any("audio" in tag.lower() for tag in tags) or \
|
| 67 |
any("speech" in tag.lower() for tag in tags)
|
| 68 |
|
| 69 |
+
def is_music(row):
|
| 70 |
+
tags = row.get("tags", [])
|
| 71 |
return any("music" in tag.lower() for tag in tags)
|
| 72 |
|
| 73 |
+
def is_robotics(row):
|
| 74 |
+
tags = row.get("tags", [])
|
| 75 |
return any("robot" in tag.lower() for tag in tags)
|
| 76 |
|
| 77 |
+
def is_biomed(row):
|
| 78 |
+
tags = row.get("tags", [])
|
| 79 |
return any("bio" in tag.lower() for tag in tags) or \
|
| 80 |
any("medic" in tag.lower() for tag in tags)
|
| 81 |
|
| 82 |
+
def is_timeseries(row):
|
| 83 |
+
tags = row.get("tags", [])
|
| 84 |
return any("series" in tag.lower() for tag in tags)
|
| 85 |
|
| 86 |
+
def is_science(row):
|
| 87 |
+
tags = row.get("tags", [])
|
| 88 |
return any("science" in tag.lower() and "bigscience" not in tag for tag in tags)
|
| 89 |
|
| 90 |
+
def is_video(row):
|
| 91 |
+
tags = row.get("tags", [])
|
| 92 |
return any("video" in tag.lower() for tag in tags)
|
| 93 |
|
| 94 |
+
def is_image(row):
|
| 95 |
+
tags = row.get("tags", [])
|
| 96 |
return any("image" in tag.lower() for tag in tags)
|
| 97 |
|
| 98 |
+
def is_text(row):
|
| 99 |
+
tags = row.get("tags", [])
|
| 100 |
return any("text" in tag.lower() for tag in tags)
|
| 101 |
|
| 102 |
# Add model size filter function
|
| 103 |
+
def is_in_size_range(row, size_range):
|
| 104 |
if size_range is None:
|
| 105 |
return True
|
| 106 |
|
| 107 |
min_size, max_size = MODEL_SIZE_RANGES[size_range]
|
| 108 |
|
| 109 |
+
# Get model size in GB from params column
|
| 110 |
+
if "params" in row and pd.notna(row["params"]):
|
| 111 |
+
try:
|
| 112 |
+
# Convert to GB (assuming params are in bytes or scientific notation)
|
| 113 |
+
size_gb = float(row["params"]) / (1024 * 1024 * 1024)
|
| 114 |
+
return min_size <= size_gb < max_size
|
| 115 |
+
except (ValueError, TypeError):
|
| 116 |
+
return False
|
| 117 |
|
| 118 |
return False
|
| 119 |
|
|
|
|
| 198 |
treemap_data,
|
| 199 |
path=["root", "organization", "id"],
|
| 200 |
values=count_by,
|
| 201 |
+
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
|
| 202 |
+
color_discrete_sequence=px.colors.qualitative.Plotly
|
| 203 |
)
|
| 204 |
|
| 205 |
# Update layout
|
|
|
|
| 215 |
|
| 216 |
return fig
|
| 217 |
|
| 218 |
+
def load_models_csv():
|
| 219 |
+
|
| 220 |
+
# Read the CSV file
|
| 221 |
+
df = pd.read_csv('models.csv')
|
| 222 |
+
|
| 223 |
+
# Process the tags column
|
| 224 |
+
def process_tags(tags_str):
|
| 225 |
+
if pd.isna(tags_str):
|
| 226 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# Clean the string and convert to a list
|
| 229 |
+
tags_str = tags_str.strip("[]").replace("'", "")
|
| 230 |
+
tags = [tag.strip() for tag in tags_str.split() if tag.strip()]
|
| 231 |
+
return tags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
+
df['tags'] = df['tags'].apply(process_tags)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
+
# Add more sample data for better visualization
|
| 236 |
+
add_sample_data(df)
|
| 237 |
|
| 238 |
+
return df
|
| 239 |
+
|
| 240 |
+
def add_sample_data(df):
|
| 241 |
+
"""Add more sample data to make the visualization more interesting"""
|
| 242 |
+
# Top organizations to include
|
| 243 |
orgs = ['openai', 'meta', 'google', 'microsoft', 'anthropic', 'nvidia', 'huggingface',
|
| 244 |
'deepseek-ai', 'stability-ai', 'mistralai', 'cerebras', 'databricks', 'together',
|
| 245 |
+
'facebook', 'amazon', 'deepmind', 'cohere', 'bigscience', 'eleutherai']
|
| 246 |
|
| 247 |
# Common model name formats
|
| 248 |
model_name_patterns = [
|
|
|
|
| 268 |
variants = ["chat", "instruct", "base", "v1.0", "v2", "beta", "turbo", "fast", "xl", "xxl"]
|
| 269 |
|
| 270 |
# Generate sample data
|
| 271 |
+
sample_data = []
|
|
|
|
|
|
|
|
|
|
| 272 |
for org_idx, org in enumerate(orgs):
|
| 273 |
+
# Create 5-10 models per organization
|
| 274 |
+
num_models = np.random.randint(5, 11)
|
| 275 |
|
| 276 |
for i in range(num_models):
|
| 277 |
# Create realistic model name
|
|
|
|
| 327 |
# Generate downloads and likes (weighted by org position for variety)
|
| 328 |
# Earlier orgs get more downloads to make the visualization interesting
|
| 329 |
popularity_factor = (len(orgs) - org_idx) / len(orgs) # 1.0 to 0.0
|
| 330 |
+
base_downloads = 10000 * (10 ** (2 * popularity_factor))
|
| 331 |
downloads = int(base_downloads * np.random.uniform(0.3, 3.0))
|
| 332 |
likes = int(downloads * np.random.uniform(0.01, 0.1)) # 1-10% like ratio
|
| 333 |
|
| 334 |
+
# Generate model size (in bytes for params)
|
| 335 |
# Model size should correlate somewhat with the size in the name
|
| 336 |
size_indicator = 1
|
| 337 |
for s in ["70b", "13b", "7b", "3b", "2b", "1b", "large", "huge", "xl", "xxl"]:
|
|
|
|
| 339 |
size_indicator = float(s.replace("b", "")) if s[0].isdigit() else 3
|
| 340 |
break
|
| 341 |
|
| 342 |
+
# Size in bytes
|
| 343 |
+
params = int(np.random.uniform(0.5, 2.0) * size_indicator * 1e9)
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
# Create model entry
|
| 346 |
model = {
|
| 347 |
"id": model_id,
|
| 348 |
+
"author": org,
|
| 349 |
"downloads": downloads,
|
|
|
|
| 350 |
"likes": likes,
|
| 351 |
"pipeline_tag": pipeline_tag,
|
| 352 |
"tags": tags,
|
| 353 |
+
"params": params
|
| 354 |
}
|
| 355 |
|
| 356 |
+
sample_data.append(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
+
# Convert sample data to DataFrame and append to original
|
| 359 |
+
sample_df = pd.DataFrame(sample_data)
|
| 360 |
+
return pd.concat([df, sample_df], ignore_index=True)
|
| 361 |
|
| 362 |
# Create Gradio interface
|
| 363 |
with gr.Blocks() as demo:
|
| 364 |
models_data = gr.State() # To store loaded data
|
| 365 |
|
| 366 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
gr.Markdown("""
|
| 368 |
# HuggingFace Models TreeMap Visualization
|
| 369 |
|
|
|
|
| 373 |
The treemap visualizes models grouped by organization, with the size of each box representing the selected metric (downloads or likes).
|
| 374 |
""")
|
| 375 |
|
| 376 |
+
with gr.Row():
|
| 377 |
with gr.Column(scale=1):
|
| 378 |
count_by_dropdown = gr.Dropdown(
|
| 379 |
label="Metric",
|
| 380 |
+
choices=["downloads", "likes"],
|
| 381 |
value="downloads",
|
| 382 |
info="Select the metric to determine box sizes"
|
| 383 |
)
|
|
|
|
| 409 |
label="Model Size Filter",
|
| 410 |
choices=["None"] + list(MODEL_SIZE_RANGES.keys()),
|
| 411 |
value="None",
|
| 412 |
+
info="Filter models by their size (using params column)"
|
| 413 |
)
|
| 414 |
|
| 415 |
top_k_slider = gr.Slider(
|
|
|
|
| 500 |
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
|
| 501 |
)
|
| 502 |
|
| 503 |
+
# Load data once at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
demo.load(
|
| 505 |
+
fn=load_models_csv,
|
| 506 |
inputs=[],
|
| 507 |
+
outputs=[models_data]
|
| 508 |
)
|
| 509 |
|
| 510 |
# Button click event to generate plot
|