Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
|
| 6 |
+
PIPELINE_TAGS = [
|
| 7 |
+
'text-generation',
|
| 8 |
+
'text-to-image',
|
| 9 |
+
'text-classification',
|
| 10 |
+
'text2text-generation',
|
| 11 |
+
'audio-to-audio',
|
| 12 |
+
'feature-extraction',
|
| 13 |
+
'image-classification',
|
| 14 |
+
'translation',
|
| 15 |
+
'reinforcement-learning',
|
| 16 |
+
'fill-mask',
|
| 17 |
+
'text-to-speech',
|
| 18 |
+
'automatic-speech-recognition',
|
| 19 |
+
'image-text-to-text',
|
| 20 |
+
'token-classification',
|
| 21 |
+
'sentence-similarity',
|
| 22 |
+
'question-answering',
|
| 23 |
+
'image-feature-extraction',
|
| 24 |
+
'summarization',
|
| 25 |
+
'zero-shot-image-classification',
|
| 26 |
+
'object-detection',
|
| 27 |
+
'image-segmentation',
|
| 28 |
+
'image-to-image',
|
| 29 |
+
'image-to-text',
|
| 30 |
+
'audio-classification',
|
| 31 |
+
'visual-question-answering',
|
| 32 |
+
'text-to-video',
|
| 33 |
+
'zero-shot-classification',
|
| 34 |
+
'depth-estimation',
|
| 35 |
+
'text-ranking',
|
| 36 |
+
'image-to-video',
|
| 37 |
+
'multiple-choice',
|
| 38 |
+
'unconditional-image-generation',
|
| 39 |
+
'video-classification',
|
| 40 |
+
'text-to-audio',
|
| 41 |
+
'time-series-forecasting',
|
| 42 |
+
'any-to-any',
|
| 43 |
+
'video-text-to-text',
|
| 44 |
+
'table-question-answering',
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
def is_audio_speech(repo_dct):
|
| 48 |
+
res = (repo_dct.get("pipeline_tag", None) and "audio" in repo_dct.get("pipeline_tag", "").lower()) or \
|
| 49 |
+
(repo_dct.get("pipeline_tag", None) and "speech" in repo_dct.get("pipeline_tag", "").lower()) or \
|
| 50 |
+
(repo_dct.get("tags", None) and any("audio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
|
| 51 |
+
(repo_dct.get("tags", None) and any("speech" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 52 |
+
return res
|
| 53 |
+
|
| 54 |
+
def is_music(repo_dct):
|
| 55 |
+
res = (repo_dct.get("tags", None) and any("music" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 56 |
+
return res
|
| 57 |
+
|
| 58 |
+
def is_robotics(repo_dct):
|
| 59 |
+
res = (repo_dct.get("tags", None) and any("robot" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
def is_biomed(repo_dct):
|
| 63 |
+
res = (repo_dct.get("tags", None) and any("bio" in tag.lower() for tag in repo_dct.get("tags", []))) or \
|
| 64 |
+
(repo_dct.get("tags", None) and any("medic" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 65 |
+
return res
|
| 66 |
+
|
| 67 |
+
def is_timeseries(repo_dct):
|
| 68 |
+
res = (repo_dct.get("tags", None) and any("series" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 69 |
+
return res
|
| 70 |
+
|
| 71 |
+
def is_science(repo_dct):
|
| 72 |
+
res = (repo_dct.get("tags", None) and any("science" in tag.lower() and not "bigscience" in tag for tag in repo_dct.get("tags", [])))
|
| 73 |
+
return res
|
| 74 |
+
|
| 75 |
+
def is_video(repo_dct):
|
| 76 |
+
res = (repo_dct.get("tags", None) and any("video" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 77 |
+
return res
|
| 78 |
+
|
| 79 |
+
def is_image(repo_dct):
|
| 80 |
+
res = (repo_dct.get("tags", None) and any("image" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 81 |
+
return res
|
| 82 |
+
|
| 83 |
+
def is_text(repo_dct):
|
| 84 |
+
res = (repo_dct.get("tags", None) and any("text" in tag.lower() for tag in repo_dct.get("tags", [])))
|
| 85 |
+
return res
|
| 86 |
+
|
| 87 |
+
TAG_FILTER_FUNCS = {
|
| 88 |
+
"Audio & Speech": is_audio_speech,
|
| 89 |
+
"Time series": is_timeseries,
|
| 90 |
+
"Robotics": is_robotics,
|
| 91 |
+
"Music": is_music,
|
| 92 |
+
"Video": is_video,
|
| 93 |
+
"Images": is_image,
|
| 94 |
+
"Text": is_text,
|
| 95 |
+
"Biomedical": is_biomed,
|
| 96 |
+
"Sciences": is_science,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
def make_org_stats(repo_type, count_by, org_stats, top_k=20, filter_func=None):
|
| 100 |
+
assert count_by in ["likes", "downloads", "downloads_all"]
|
| 101 |
+
assert repo_type in ["all", "datasets", "models"]
|
| 102 |
+
repos = ["datasets", "models"] if repo_type == "all" else [repo_type]
|
| 103 |
+
if filter_func is None:
|
| 104 |
+
filter_func = lambda x: True
|
| 105 |
+
sorted_stats = sorted(
|
| 106 |
+
[(
|
| 107 |
+
author,
|
| 108 |
+
sum(dct[count_by] for dct in author_dct[repo] if filter_func(dct))
|
| 109 |
+
) for repo in repos for author, author_dct in org_stats.items()],
|
| 110 |
+
key=lambda x:x[1],
|
| 111 |
+
reverse=True,
|
| 112 |
+
)
|
| 113 |
+
res = sorted_stats[:top_k] + [("Others...", sum(st for auth, st in sorted_stats[top_k:]))]
|
| 114 |
+
total_st = sum(st for o, st in res)
|
| 115 |
+
res_plot_df = []
|
| 116 |
+
for org, st in res:
|
| 117 |
+
if org == "Others...":
|
| 118 |
+
res_plot_df += [("Others...", "other", st * 100 / total_st)]
|
| 119 |
+
else:
|
| 120 |
+
for repo in repos:
|
| 121 |
+
for dct in org_stats[org][repo]:
|
| 122 |
+
if filter_func(dct):
|
| 123 |
+
res_plot_df += [(org, dct["id"], dct[count_by] * 100 / total_st)]
|
| 124 |
+
return ([(o, 100 * st / total_st) for o, st in res if st > 0], res_plot_df)
|
| 125 |
+
|
| 126 |
+
def make_figure(count_by, repo_type, org_stats, tag_filter=None, pipeline_filter=None):
|
| 127 |
+
assert count_by in ["downloads", "likes", "downloads_all"]
|
| 128 |
+
assert repo_type in ["all", "models", "datasets"]
|
| 129 |
+
assert tag_filter is None or pipeline_filter is None
|
| 130 |
+
filter_func = None
|
| 131 |
+
if tag_filter:
|
| 132 |
+
filter_func = TAG_FILTER_FUNCS[tag_filter]
|
| 133 |
+
if pipeline_filter:
|
| 134 |
+
filter_func = lambda dct: dct.get("pipeline_tag", None) and dct.get("pipeline_tag", "") == pipeline_filter
|
| 135 |
+
_, res_plot_df = make_org_stats(repo_type, count_by, org_stats, top_k=25, filter_func=filter_func)
|
| 136 |
+
df = pd.DataFrame(
|
| 137 |
+
dict(
|
| 138 |
+
organizations=[o for o, _, _ in res_plot_df],
|
| 139 |
+
repo=[r for _, r, _ in res_plot_df],
|
| 140 |
+
stats=[s for _, _, s in res_plot_df],
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
df[repo_type] = repo_type # in order to have a single root node
|
| 144 |
+
fig = px.treemap(df, path=[repo_type, 'organizations', 'repo'], values='stats')
|
| 145 |
+
fig.update_layout(
|
| 146 |
+
treemapcolorway = ["pink" for _ in range(len(res_plot_df))],
|
| 147 |
+
margin = dict(t=50, l=25, r=25, b=25)
|
| 148 |
+
)
|
| 149 |
+
return fig
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
with gr.Blocks() as demo:
|
| 153 |
+
org_stats_data = gr.State(value=None) # To store loaded data
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
gr.Markdown("""
|
| 157 |
+
## Hugging Face Organization Stats
|
| 158 |
+
|
| 159 |
+
This app shows how different organizations are contributing to different aspects of the open AI ecosystem.
|
| 160 |
+
Use the dropdowns on the left to select repository types, metrics, and optionally tags representing topics or modalities of interest.
|
| 161 |
+
""")
|
| 162 |
+
with gr.Row():
|
| 163 |
+
with gr.Column(scale=1):
|
| 164 |
+
repo_type_dropdown = gr.Dropdown(
|
| 165 |
+
label="Repository Type",
|
| 166 |
+
choices=["all", "models", "datasets"],
|
| 167 |
+
value="all"
|
| 168 |
+
)
|
| 169 |
+
count_by_dropdown = gr.Dropdown(
|
| 170 |
+
label="Metric",
|
| 171 |
+
choices=["downloads", "likes", "downloads_all"],
|
| 172 |
+
value="downloads"
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
filter_choice_radio = gr.Radio(
|
| 176 |
+
label="Filter by",
|
| 177 |
+
choices=["None", "Tag Filter", "Pipeline Filter"],
|
| 178 |
+
value="None"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
tag_filter_dropdown = gr.Dropdown(
|
| 182 |
+
label="Select Tag",
|
| 183 |
+
choices=list(TAG_FILTER_FUNCS.keys()),
|
| 184 |
+
value=None,
|
| 185 |
+
visible=False
|
| 186 |
+
)
|
| 187 |
+
pipeline_filter_dropdown = gr.Dropdown(
|
| 188 |
+
label="Select Pipeline Tag",
|
| 189 |
+
choices=PIPELINE_TAGS,
|
| 190 |
+
value=None,
|
| 191 |
+
visible=False
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
generate_plot_button = gr.Button("Generate Plot")
|
| 195 |
+
|
| 196 |
+
with gr.Column(scale=3):
|
| 197 |
+
plot_output = gr.Plot()
|
| 198 |
+
|
| 199 |
+
def generate_plot_on_click(repo_type, count_by, filter_choice, tag_filter, pipeline_filter, data):
|
| 200 |
+
# Print the current state of the input variables
|
| 201 |
+
print(f"Generating plot with the following inputs:")
|
| 202 |
+
print(f" Repository Type: {repo_type}")
|
| 203 |
+
print(f" Metric (Count By): {count_by}")
|
| 204 |
+
print(f" Filter Choice: {filter_choice}")
|
| 205 |
+
if filter_choice == "Tag Filter":
|
| 206 |
+
print(f" Tag Filter: {tag_filter}")
|
| 207 |
+
elif filter_choice == "Pipeline Filter":
|
| 208 |
+
print(f" Pipeline Filter: {pipeline_filter}")
|
| 209 |
+
|
| 210 |
+
if data is None:
|
| 211 |
+
print("Error: Data not loaded yet.")
|
| 212 |
+
return None
|
| 213 |
+
|
| 214 |
+
selected_tag_filter = None
|
| 215 |
+
selected_pipeline_filter = None
|
| 216 |
+
|
| 217 |
+
if filter_choice == "Tag Filter":
|
| 218 |
+
selected_tag_filter = tag_filter
|
| 219 |
+
elif filter_choice == "Pipeline Filter":
|
| 220 |
+
selected_pipeline_filter = pipeline_filter
|
| 221 |
+
|
| 222 |
+
fig = make_figure(
|
| 223 |
+
count_by=count_by,
|
| 224 |
+
repo_type=repo_type,
|
| 225 |
+
org_stats=data,
|
| 226 |
+
tag_filter=selected_tag_filter,
|
| 227 |
+
pipeline_filter=selected_pipeline_filter
|
| 228 |
+
)
|
| 229 |
+
return fig
|
| 230 |
+
|
| 231 |
+
def update_filter_visibility(filter_choice):
|
| 232 |
+
if filter_choice == "Tag Filter":
|
| 233 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 234 |
+
elif filter_choice == "Pipeline Filter":
|
| 235 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 236 |
+
else: # "None"
|
| 237 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 238 |
+
|
| 239 |
+
filter_choice_radio.change(
|
| 240 |
+
fn=update_filter_visibility,
|
| 241 |
+
inputs=[filter_choice_radio],
|
| 242 |
+
outputs=[tag_filter_dropdown, pipeline_filter_dropdown]
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
# Load data once at startup
|
| 246 |
+
def load_org_data():
|
| 247 |
+
print("Loading organization statistics data...")
|
| 248 |
+
loaded_org_stats = json.load(open("org_to_artifacts_2l_stats.json"))
|
| 249 |
+
print("Data loaded successfully.")
|
| 250 |
+
return loaded_org_stats
|
| 251 |
+
|
| 252 |
+
demo.load(
|
| 253 |
+
fn=load_org_data,
|
| 254 |
+
inputs=[], # No inputs needed to just load data
|
| 255 |
+
outputs=[org_stats_data] # Only output to the state
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# Button click event to generate plot
|
| 259 |
+
generate_plot_button.click(
|
| 260 |
+
fn=generate_plot_on_click,
|
| 261 |
+
inputs=[
|
| 262 |
+
repo_type_dropdown,
|
| 263 |
+
count_by_dropdown,
|
| 264 |
+
filter_choice_radio,
|
| 265 |
+
tag_filter_dropdown,
|
| 266 |
+
pipeline_filter_dropdown,
|
| 267 |
+
org_stats_data
|
| 268 |
+
],
|
| 269 |
+
outputs=[plot_output]
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
if __name__ == "__main__":
|
| 274 |
+
# org_stats = json.load(open("org_to_artifacts_2l_stats.json")) # Data loading handled by demo.load
|
| 275 |
+
demo.launch()
|