Spaces:
Running
Running
Upload 2 files
Browse files- app.py +59 -16
- dashboard.css +22 -0
app.py
CHANGED
|
@@ -368,32 +368,51 @@ def create_leaderboard(selected_categories):
|
|
| 368 |
for category_name, category in data['scores'].items():
|
| 369 |
category_score = 0
|
| 370 |
category_total = 0
|
|
|
|
| 371 |
|
| 372 |
for section in category.values():
|
| 373 |
if section['status'] != 'N/A':
|
|
|
|
| 374 |
questions = section.get('questions', {})
|
| 375 |
category_score += sum(1 for q in questions.values() if q)
|
| 376 |
category_total += len(questions)
|
| 377 |
|
| 378 |
if category_total > 0:
|
| 379 |
score_by_category[category_name] = (category_score / category_total) * 100
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
| 382 |
|
| 383 |
# Calculate overall score
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
# Get model type and URL
|
| 387 |
model_type = data['metadata'].get('Type', 'Unknown')
|
| 388 |
model_url = data['metadata'].get('URL', '')
|
| 389 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
# Create model name with HTML link if URL exists
|
| 391 |
model_display = f'<a href="{model_url}" target="_blank">{model}</a>' if model_url else model
|
| 392 |
|
| 393 |
# Create entry with numerical scores
|
| 394 |
model_entry = {
|
| 395 |
'AI System': model_display,
|
| 396 |
-
'
|
| 397 |
'Overall Completion Rate': score_percentage
|
| 398 |
}
|
| 399 |
|
|
@@ -418,17 +437,40 @@ def create_leaderboard(selected_categories):
|
|
| 418 |
# Convert to DataFrame
|
| 419 |
df = pd.DataFrame(scores)
|
| 420 |
|
| 421 |
-
# Sort by Overall Completion Rate descending
|
| 422 |
-
df = df
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
|
| 424 |
# Add rank column based on current sort
|
| 425 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
| 426 |
|
| 427 |
-
#
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
if
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
| 433 |
return df
|
| 434 |
|
|
@@ -436,10 +478,11 @@ first_model = next(iter(models.values()))
|
|
| 436 |
category_choices = list(first_model['scores'].keys())
|
| 437 |
|
| 438 |
with gr.Column(visible=True) as leaderboard_tab:
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
|
|
|
| 443 |
)
|
| 444 |
|
| 445 |
def create_category_chart(selected_models, selected_categories):
|
|
@@ -645,7 +688,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 645 |
value=create_leaderboard(category_choices),
|
| 646 |
interactive=False,
|
| 647 |
wrap=True,
|
| 648 |
-
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * len(category_choices) #
|
| 649 |
)
|
| 650 |
|
| 651 |
with gr.Column(visible=False) as category_analysis_tab:
|
|
|
|
| 368 |
for category_name, category in data['scores'].items():
|
| 369 |
category_score = 0
|
| 370 |
category_total = 0
|
| 371 |
+
all_na = True
|
| 372 |
|
| 373 |
for section in category.values():
|
| 374 |
if section['status'] != 'N/A':
|
| 375 |
+
all_na = False
|
| 376 |
questions = section.get('questions', {})
|
| 377 |
category_score += sum(1 for q in questions.values() if q)
|
| 378 |
category_total += len(questions)
|
| 379 |
|
| 380 |
if category_total > 0:
|
| 381 |
score_by_category[category_name] = (category_score / category_total) * 100
|
| 382 |
+
elif all_na:
|
| 383 |
+
score_by_category[category_name] = "N/A"
|
| 384 |
+
total_score += category_score
|
| 385 |
+
total_questions += category_total
|
| 386 |
|
| 387 |
# Calculate overall score
|
| 388 |
+
overall_all_na = all(
|
| 389 |
+
all(section['status'] == 'N/A' for section in category.values())
|
| 390 |
+
for category_name, category in data['scores'].items()
|
| 391 |
+
if category_name in selected_categories
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
score_percentage = "N/A" if overall_all_na else (
|
| 395 |
+
(total_score / total_questions * 100) if total_questions > 0 else 0
|
| 396 |
+
)
|
| 397 |
|
| 398 |
# Get model type and URL
|
| 399 |
model_type = data['metadata'].get('Type', 'Unknown')
|
| 400 |
model_url = data['metadata'].get('URL', '')
|
| 401 |
|
| 402 |
+
# Get modalities and create badges
|
| 403 |
+
modalities = data['metadata'].get('Modalities', [])
|
| 404 |
+
modality_badges = " ".join(
|
| 405 |
+
f"<span class='modality-badge'>{get_modality_icon(m)} {m}</span>"
|
| 406 |
+
for m in modalities
|
| 407 |
+
) if modalities else "<span class='modality-badge'>💫 Unknown</span>"
|
| 408 |
+
|
| 409 |
# Create model name with HTML link if URL exists
|
| 410 |
model_display = f'<a href="{model_url}" target="_blank">{model}</a>' if model_url else model
|
| 411 |
|
| 412 |
# Create entry with numerical scores
|
| 413 |
model_entry = {
|
| 414 |
'AI System': model_display,
|
| 415 |
+
'Modality': f"<div class='modality-container'>{modality_badges}</div>",
|
| 416 |
'Overall Completion Rate': score_percentage
|
| 417 |
}
|
| 418 |
|
|
|
|
| 437 |
# Convert to DataFrame
|
| 438 |
df = pd.DataFrame(scores)
|
| 439 |
|
| 440 |
+
# Sort by Overall Completion Rate descending, putting N/A at the end
|
| 441 |
+
df['_sort_value'] = df['Overall Completion Rate'].apply(
|
| 442 |
+
lambda x: -float('inf') if x == "N/A" else float(x)
|
| 443 |
+
)
|
| 444 |
+
df = df.sort_values('_sort_value', ascending=False)
|
| 445 |
+
df = df.drop('_sort_value', axis=1)
|
| 446 |
|
| 447 |
# Add rank column based on current sort
|
| 448 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
| 449 |
|
| 450 |
+
# Get completion rate columns (Overall + category-specific)
|
| 451 |
+
completion_rate_columns = ['Overall Completion Rate'] + [
|
| 452 |
+
display_name for full_cat_name, display_name in category_map.items()
|
| 453 |
+
if full_cat_name in selected_categories
|
| 454 |
+
]
|
| 455 |
+
|
| 456 |
+
# Format non-completion rate columns
|
| 457 |
+
df['Rank'] = df['Rank'].astype(str)
|
| 458 |
+
|
| 459 |
+
# Identify and format highest values for completion rate columns
|
| 460 |
+
for col in completion_rate_columns:
|
| 461 |
+
if col in df.columns:
|
| 462 |
+
# Filter out N/A values to find the maximum numerical value
|
| 463 |
+
numeric_values = df[df[col] != "N/A"][col]
|
| 464 |
+
if not numeric_values.empty:
|
| 465 |
+
max_value = numeric_values.max()
|
| 466 |
+
df[col] = df.apply(
|
| 467 |
+
lambda row: "N/A" if row[col] == "N/A"
|
| 468 |
+
else f"**{row[col]:.1f}%**" if row[col] == max_value
|
| 469 |
+
else f"{row[col]:.1f}%",
|
| 470 |
+
axis=1
|
| 471 |
+
)
|
| 472 |
+
else:
|
| 473 |
+
df[col] = df[col].apply(lambda x: "N/A")
|
| 474 |
|
| 475 |
return df
|
| 476 |
|
|
|
|
| 478 |
category_choices = list(first_model['scores'].keys())
|
| 479 |
|
| 480 |
with gr.Column(visible=True) as leaderboard_tab:
|
| 481 |
+
leaderboard_output = gr.DataFrame(
|
| 482 |
+
value=create_leaderboard(category_choices),
|
| 483 |
+
interactive=False,
|
| 484 |
+
wrap=True,
|
| 485 |
+
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
|
| 486 |
)
|
| 487 |
|
| 488 |
def create_category_chart(selected_models, selected_categories):
|
|
|
|
| 688 |
value=create_leaderboard(category_choices),
|
| 689 |
interactive=False,
|
| 690 |
wrap=True,
|
| 691 |
+
datatype=["markdown", "markdown", "markdown"] + ["markdown"] * (len(category_choices)+1) # Support markdown in all columns
|
| 692 |
)
|
| 693 |
|
| 694 |
with gr.Column(visible=False) as category_analysis_tab:
|
dashboard.css
CHANGED
|
@@ -616,4 +616,26 @@
|
|
| 616 |
|
| 617 |
.dark .leaderboard-table tr:hover {
|
| 618 |
background-color: #2d2d2d;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
}
|
|
|
|
| 616 |
|
| 617 |
.dark .leaderboard-table tr:hover {
|
| 618 |
background-color: #2d2d2d;
|
| 619 |
+
}
|
| 620 |
+
.dataframe .modality-container {
|
| 621 |
+
margin-top: 4px;
|
| 622 |
+
}
|
| 623 |
+
|
| 624 |
+
.dataframe .modality-badge {
|
| 625 |
+
display: inline-flex;
|
| 626 |
+
align-items: center;
|
| 627 |
+
gap: 4px;
|
| 628 |
+
padding: 2px 6px;
|
| 629 |
+
background-color: #f0f7ff;
|
| 630 |
+
border: 1px solid #cce3ff;
|
| 631 |
+
border-radius: 12px;
|
| 632 |
+
font-size: 0.85em;
|
| 633 |
+
color: #0066cc;
|
| 634 |
+
margin: 2px;
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
.dark .dataframe .modality-badge {
|
| 638 |
+
background-color: #1a2733;
|
| 639 |
+
border-color: #2c3e50;
|
| 640 |
+
color: #99ccff;
|
| 641 |
}
|