Spaces:
Runtime error
Runtime error
Clean up Dockerfile and prod environment config
Browse files- Dockerfile +1 -10
- chart/env/prod.yaml +0 -546
Dockerfile
CHANGED
|
@@ -19,16 +19,9 @@ WORKDIR /app
|
|
| 19 |
# add a .env.local if the user doesn't bind a volume to it
|
| 20 |
RUN touch /app/.env.local
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
USER root
|
| 25 |
-
|
| 26 |
-
RUN mkdir -p /data/models
|
| 27 |
-
RUN chown -R 1000:1000 /data/models
|
| 28 |
-
|
| 29 |
RUN apt-get update
|
| 30 |
-
RUN apt-get install
|
| 31 |
-
|
| 32 |
|
| 33 |
# ensure npm cache dir exists before adjusting ownership
|
| 34 |
RUN mkdir -p /home/user/.npm && chown -R 1000:1000 /home/user/.npm
|
|
@@ -38,7 +31,6 @@ USER user
|
|
| 38 |
|
| 39 |
COPY --chown=1000 .env /app/.env
|
| 40 |
COPY --chown=1000 entrypoint.sh /app/entrypoint.sh
|
| 41 |
-
COPY --chown=1000 gcp-*.json /app/
|
| 42 |
COPY --chown=1000 package.json /app/package.json
|
| 43 |
COPY --chown=1000 package-lock.json /app/package-lock.json
|
| 44 |
|
|
@@ -94,7 +86,6 @@ ARG PUBLIC_APP_COLOR=blue
|
|
| 94 |
ARG PUBLIC_COMMIT_SHA=
|
| 95 |
ENV PUBLIC_COMMIT_SHA=${PUBLIC_COMMIT_SHA}
|
| 96 |
ENV BODY_SIZE_LIMIT=15728640
|
| 97 |
-
ENV MODELS_STORAGE_PATH=/data/models
|
| 98 |
|
| 99 |
#import the build & dependencies
|
| 100 |
COPY --from=builder --chown=1000 /app/build /app/build
|
|
|
|
| 19 |
# add a .env.local if the user doesn't bind a volume to it
|
| 20 |
RUN touch /app/.env.local
|
| 21 |
|
|
|
|
|
|
|
| 22 |
USER root
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
RUN apt-get update
|
| 24 |
+
RUN apt-get install -y libgomp1
|
|
|
|
| 25 |
|
| 26 |
# ensure npm cache dir exists before adjusting ownership
|
| 27 |
RUN mkdir -p /home/user/.npm && chown -R 1000:1000 /home/user/.npm
|
|
|
|
| 31 |
|
| 32 |
COPY --chown=1000 .env /app/.env
|
| 33 |
COPY --chown=1000 entrypoint.sh /app/entrypoint.sh
|
|
|
|
| 34 |
COPY --chown=1000 package.json /app/package.json
|
| 35 |
COPY --chown=1000 package-lock.json /app/package-lock.json
|
| 36 |
|
|
|
|
| 86 |
ARG PUBLIC_COMMIT_SHA=
|
| 87 |
ENV PUBLIC_COMMIT_SHA=${PUBLIC_COMMIT_SHA}
|
| 88 |
ENV BODY_SIZE_LIMIT=15728640
|
|
|
|
| 89 |
|
| 90 |
#import the build & dependencies
|
| 91 |
COPY --from=builder --chown=1000 /app/build /app/build
|
chart/env/prod.yaml
CHANGED
|
@@ -42,7 +42,6 @@ ingressInternal:
|
|
| 42 |
kubernetes.io/ingress.class: "alb"
|
| 43 |
|
| 44 |
envVars:
|
| 45 |
-
ADDRESS_HEADER: 'X-Forwarded-For'
|
| 46 |
ADMIN_CLI_LOGIN: "false"
|
| 47 |
ALTERNATIVE_REDIRECT_URLS: '["huggingchat://login/callback"]'
|
| 48 |
APP_BASE: "/chat"
|
|
@@ -53,408 +52,6 @@ envVars:
|
|
| 53 |
ENABLE_ASSISTANTS: "true"
|
| 54 |
ENABLE_CONFIG_MANAGER: "false"
|
| 55 |
LOG_LEVEL: "debug"
|
| 56 |
-
MODELS: >
|
| 57 |
-
[
|
| 58 |
-
{
|
| 59 |
-
"name": "meta-llama/Llama-3.3-70B-Instruct",
|
| 60 |
-
"id": "meta-llama/Llama-3.3-70B-Instruct",
|
| 61 |
-
"description": "Ideal for everyday use. A fast and extremely capable model matching closed source models' capabilities. Now with the latest Llama 3.3 weights!",
|
| 62 |
-
"modelUrl": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct",
|
| 63 |
-
"websiteUrl": "https://llama.meta.com/",
|
| 64 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/meta-logo.png",
|
| 65 |
-
"tools": true,
|
| 66 |
-
"preprompt": "",
|
| 67 |
-
"parameters": {
|
| 68 |
-
"stop": ["<|endoftext|>", "<|eot_id|>"],
|
| 69 |
-
"temperature": 0.6,
|
| 70 |
-
"max_new_tokens": 1024,
|
| 71 |
-
"truncate": 7167
|
| 72 |
-
},
|
| 73 |
-
"endpoints": [{"type" : "inference-client"}],
|
| 74 |
-
"promptExamples": [
|
| 75 |
-
{
|
| 76 |
-
"title": "Write an email",
|
| 77 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 78 |
-
},
|
| 79 |
-
{
|
| 80 |
-
"title": "Code a game",
|
| 81 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 82 |
-
},
|
| 83 |
-
{
|
| 84 |
-
"title": "Recipe help",
|
| 85 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 86 |
-
}
|
| 87 |
-
]
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"name": "Qwen/Qwen3-235B-A22B",
|
| 91 |
-
"description": "Qwen's flagship model featuring optional reasoning. Exceptional performance with benchmarks rivaling R1 and o1.",
|
| 92 |
-
"modelUrl": "https://huggingface.co/Qwen/Qwen3-235B-A22B",
|
| 93 |
-
"websiteUrl": "https://qwenlm.github.io/blog/qwen3/",
|
| 94 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
|
| 95 |
-
"preprompt": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
| 96 |
-
"reasoning": {
|
| 97 |
-
"type": "tokens",
|
| 98 |
-
"beginToken": "<think>",
|
| 99 |
-
"endToken": "</think>"
|
| 100 |
-
},
|
| 101 |
-
"parameters": {
|
| 102 |
-
"stop": ["<|endoftext|>", "<|im_end|>"],
|
| 103 |
-
"temperature": 0.6,
|
| 104 |
-
},
|
| 105 |
-
"tools": true,
|
| 106 |
-
"promptExamples": [
|
| 107 |
-
{
|
| 108 |
-
"title": "Write an email",
|
| 109 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12) /nothink"
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
"title": "Build a website",
|
| 113 |
-
"prompt": "Generate a snazzy static landing page for a local coffee shop using HTML and CSS. You can use tailwind using <script src='https://cdn.tailwindcss.com'></script>."
|
| 114 |
-
},
|
| 115 |
-
{
|
| 116 |
-
"title": "Larger number",
|
| 117 |
-
"prompt": "9.11 or 9.9 which number is larger?"
|
| 118 |
-
},
|
| 119 |
-
],
|
| 120 |
-
"endpoints": [
|
| 121 |
-
{
|
| 122 |
-
"type": "inference-client",
|
| 123 |
-
"baseURL": "https://api-inference.endpoints.huggingface.tech/models/Qwen/Qwen3-235B-A22B/v1"
|
| 124 |
-
}
|
| 125 |
-
]
|
| 126 |
-
},
|
| 127 |
-
{
|
| 128 |
-
"name": "Qwen/Qwen2.5-72B-Instruct",
|
| 129 |
-
"description": "The latest Qwen open model with improved role-playing, long text generation and structured data understanding.",
|
| 130 |
-
"modelUrl": "https://huggingface.co/Qwen/Qwen2.5-72B-Instruct",
|
| 131 |
-
"websiteUrl": "https://qwenlm.github.io/blog/qwen2.5/",
|
| 132 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
|
| 133 |
-
"preprompt": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
|
| 134 |
-
"parameters": {
|
| 135 |
-
"stop": ["<|endoftext|>", "<|im_end|>"],
|
| 136 |
-
"temperature": 0.6,
|
| 137 |
-
"truncate": 28672,
|
| 138 |
-
"max_new_tokens": 3072
|
| 139 |
-
},
|
| 140 |
-
"tools": true,
|
| 141 |
-
"endpoints": [{"type" : "inference-client"}],
|
| 142 |
-
"promptExamples": [
|
| 143 |
-
{
|
| 144 |
-
"title": "Write an email",
|
| 145 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 146 |
-
},
|
| 147 |
-
{
|
| 148 |
-
"title": "Code a game",
|
| 149 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 150 |
-
},
|
| 151 |
-
{
|
| 152 |
-
"title": "Recipe help",
|
| 153 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 154 |
-
}
|
| 155 |
-
]
|
| 156 |
-
},
|
| 157 |
-
{
|
| 158 |
-
"name": "CohereLabs/c4ai-command-r-plus-08-2024",
|
| 159 |
-
"description": "Cohere's largest language model, optimized for conversational interaction and tool use. Now with the 2024 update!",
|
| 160 |
-
"modelUrl": "https://huggingface.co/CohereLabs/c4ai-command-r-plus-08-2024",
|
| 161 |
-
"websiteUrl": "https://docs.cohere.com/docs/command-r-plus",
|
| 162 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png",
|
| 163 |
-
"tools": true,
|
| 164 |
-
"systemRoleSupported": false,
|
| 165 |
-
"parameters": {
|
| 166 |
-
"stop": ["<|END_OF_TURN_TOKEN|>", "<|im_end|>"],
|
| 167 |
-
"truncate": 28672,
|
| 168 |
-
"max_new_tokens": 2048,
|
| 169 |
-
"temperature": 0.3
|
| 170 |
-
},
|
| 171 |
-
"endpoints": [{"type" : "inference-client"}],
|
| 172 |
-
"promptExamples": [
|
| 173 |
-
{
|
| 174 |
-
"title": "Generate image",
|
| 175 |
-
"prompt": "Generate the portrait of a scientific mouse in its laboratory."
|
| 176 |
-
},
|
| 177 |
-
{
|
| 178 |
-
"title": "Review code",
|
| 179 |
-
"prompt": "Review this pull request: https://github.com/huggingface/chat-ui/pull/1131/files"
|
| 180 |
-
},
|
| 181 |
-
{
|
| 182 |
-
"title": "Code a game",
|
| 183 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 184 |
-
}
|
| 185 |
-
]
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 189 |
-
"modelUrl": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 190 |
-
"websiteUrl": "https://deepseek.com/",
|
| 191 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/deepseek-logo.png",
|
| 192 |
-
"description": "The first reasoning model from DeepSeek, distilled into a 32B dense model. Outperforms o1-mini on multiple benchmarks.",
|
| 193 |
-
"reasoning": {
|
| 194 |
-
"type": "tokens",
|
| 195 |
-
"beginToken": "",
|
| 196 |
-
"endToken": "</think>"
|
| 197 |
-
},
|
| 198 |
-
"tools": true,
|
| 199 |
-
"promptExamples": [
|
| 200 |
-
{
|
| 201 |
-
"title": "Rs in strawberry",
|
| 202 |
-
"prompt": "how many R in strawberry?"
|
| 203 |
-
},
|
| 204 |
-
{
|
| 205 |
-
"title": "Larger number",
|
| 206 |
-
"prompt": "9.11 or 9.9 which number is larger?"
|
| 207 |
-
},
|
| 208 |
-
{
|
| 209 |
-
"title": "Measuring 6 liters",
|
| 210 |
-
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
|
| 211 |
-
}
|
| 212 |
-
],
|
| 213 |
-
"endpoints": [
|
| 214 |
-
{
|
| 215 |
-
"type": "inference-client",
|
| 216 |
-
"baseURL": "https://b8xf586h164t4vk7.us-east-1.aws.endpoints.huggingface.cloud/v1"
|
| 217 |
-
}
|
| 218 |
-
]
|
| 219 |
-
},
|
| 220 |
-
{
|
| 221 |
-
"name": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
|
| 222 |
-
"modelUrl": "https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
|
| 223 |
-
"websiteUrl": "https://www.nvidia.com/",
|
| 224 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nvidia-logo.png",
|
| 225 |
-
"description": "Nvidia's latest Llama fine-tune, topping alignment benchmarks and optimized for instruction following.",
|
| 226 |
-
"parameters": {
|
| 227 |
-
"stop": ["<|eot_id|>", "<|im_end|>"],
|
| 228 |
-
"temperature": 0.5,
|
| 229 |
-
"truncate": 28672,
|
| 230 |
-
"max_new_tokens": 2048
|
| 231 |
-
},
|
| 232 |
-
"promptExamples": [
|
| 233 |
-
{
|
| 234 |
-
"title": "Rs in strawberry",
|
| 235 |
-
"prompt": "how many R in strawberry?"
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"title": "Larger number",
|
| 239 |
-
"prompt": "9.11 or 9.9 which number is larger?"
|
| 240 |
-
},
|
| 241 |
-
{
|
| 242 |
-
"title": "Measuring 6 liters",
|
| 243 |
-
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
|
| 244 |
-
}
|
| 245 |
-
],
|
| 246 |
-
"endpoints": [
|
| 247 |
-
{
|
| 248 |
-
"type": "inference-client",
|
| 249 |
-
"baseURL": "https://api-inference.endpoints.huggingface.tech/models/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/v1"
|
| 250 |
-
}
|
| 251 |
-
]
|
| 252 |
-
},
|
| 253 |
-
{
|
| 254 |
-
"name": "Qwen/QwQ-32B",
|
| 255 |
-
"tools": true,
|
| 256 |
-
"preprompt": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.",
|
| 257 |
-
"modelUrl": "https://huggingface.co/Qwen/QwQ-32B",
|
| 258 |
-
"websiteUrl": "https://qwenlm.github.io/blog/qwq-32b/",
|
| 259 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
|
| 260 |
-
"description": "QwQ is the latest reasoning model released by the Qwen team, approaching the capabilities of R1 in benchmarks.",
|
| 261 |
-
"reasoning": {
|
| 262 |
-
"type": "tokens",
|
| 263 |
-
"beginToken": "",
|
| 264 |
-
"endToken": "</think>"
|
| 265 |
-
},
|
| 266 |
-
"promptExamples": [
|
| 267 |
-
{
|
| 268 |
-
"title": "Rs in strawberry",
|
| 269 |
-
"prompt": "how many R in strawberry?"
|
| 270 |
-
},
|
| 271 |
-
{
|
| 272 |
-
"title": "Larger number",
|
| 273 |
-
"prompt": "9.11 or 9.9 which number is larger?"
|
| 274 |
-
},
|
| 275 |
-
{
|
| 276 |
-
"title": "Measuring 6 liters",
|
| 277 |
-
"prompt": "I have a 6- and a 12-liter jug. I want to measure exactly 6 liters."
|
| 278 |
-
}
|
| 279 |
-
],
|
| 280 |
-
"endpoints": [
|
| 281 |
-
{
|
| 282 |
-
"type": "inference-client",
|
| 283 |
-
}
|
| 284 |
-
]
|
| 285 |
-
},
|
| 286 |
-
{
|
| 287 |
-
"name": "google/gemma-3-27b-it",
|
| 288 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/google-logo.png",
|
| 289 |
-
"multimodal": true,
|
| 290 |
-
"tools": true,
|
| 291 |
-
"systemRoleSupported" : false,
|
| 292 |
-
"description": "Google's latest open model with great multilingual performance, supports image inputs natively.",
|
| 293 |
-
"websiteUrl": "https://blog.google/technology/developers/gemma-3/",
|
| 294 |
-
"promptExamples": [
|
| 295 |
-
{
|
| 296 |
-
"title": "Write an email",
|
| 297 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 298 |
-
},
|
| 299 |
-
{
|
| 300 |
-
"title": "Code a game",
|
| 301 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 302 |
-
},
|
| 303 |
-
{
|
| 304 |
-
"title": "Recipe help",
|
| 305 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 306 |
-
}
|
| 307 |
-
],
|
| 308 |
-
"endpoints": [
|
| 309 |
-
{
|
| 310 |
-
"type": "inference-client",
|
| 311 |
-
"baseURL": "https://wp0d3hn6s3k8jk22.us-east-1.aws.endpoints.huggingface.cloud/v1",
|
| 312 |
-
"multimodal": {
|
| 313 |
-
"image": {
|
| 314 |
-
"maxSizeInMB": 10,
|
| 315 |
-
"maxWidth": 560,
|
| 316 |
-
"maxHeight": 560,
|
| 317 |
-
"supportedMimeTypes": ["image/jpeg", "image/png", "image/webp"],
|
| 318 |
-
"preferredMimeType": "image/webp"
|
| 319 |
-
}
|
| 320 |
-
}
|
| 321 |
-
}
|
| 322 |
-
]
|
| 323 |
-
},
|
| 324 |
-
{
|
| 325 |
-
"name": "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
|
| 326 |
-
"tools": true,
|
| 327 |
-
"displayName": "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
|
| 328 |
-
"description": "A small model with good capabilities in language understanding and commonsense reasoning.",
|
| 329 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
|
| 330 |
-
"websiteUrl": "https://mistral.ai/news/mistral-nemo/",
|
| 331 |
-
"modelUrl": "https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503",
|
| 332 |
-
"preprompt": "",
|
| 333 |
-
"promptExamples": [
|
| 334 |
-
{
|
| 335 |
-
"title": "Write an email",
|
| 336 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 337 |
-
},
|
| 338 |
-
{
|
| 339 |
-
"title": "Code a game",
|
| 340 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 341 |
-
},
|
| 342 |
-
{
|
| 343 |
-
"title": "Recipe help",
|
| 344 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 345 |
-
}
|
| 346 |
-
],
|
| 347 |
-
|
| 348 |
-
"endpoints": [
|
| 349 |
-
{
|
| 350 |
-
"type": "inference-client",
|
| 351 |
-
"baseURL": "https://hkjfqcryevvq9cie.us-east-1.aws.endpoints.huggingface.cloud/v1"
|
| 352 |
-
}
|
| 353 |
-
]
|
| 354 |
-
},
|
| 355 |
-
{
|
| 356 |
-
"name": "Qwen/Qwen2.5-VL-32B-Instruct",
|
| 357 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/qwen-logo.png",
|
| 358 |
-
"description": "The latest multimodal model from Qwen! Supports image inputs natively.",
|
| 359 |
-
"websiteUrl": "https://qwenlm.github.io/blog/qwen2.5-vl/",
|
| 360 |
-
"modelUrl": "https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct",
|
| 361 |
-
"multimodal": true,
|
| 362 |
-
"promptExamples": [
|
| 363 |
-
{
|
| 364 |
-
"title": "Write an email",
|
| 365 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 366 |
-
},
|
| 367 |
-
{
|
| 368 |
-
"title": "Code a game",
|
| 369 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 370 |
-
},
|
| 371 |
-
{
|
| 372 |
-
"title": "Recipe help",
|
| 373 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 374 |
-
}
|
| 375 |
-
],
|
| 376 |
-
"endpoints": [
|
| 377 |
-
{
|
| 378 |
-
"type": "inference-client",
|
| 379 |
-
"multimodal": {
|
| 380 |
-
"image": {
|
| 381 |
-
"maxSizeInMB": 10,
|
| 382 |
-
"maxWidth": 1024,
|
| 383 |
-
"maxHeight": 1024,
|
| 384 |
-
"supportedMimeTypes": ["image/png", "image/jpeg", "image/webp"],
|
| 385 |
-
"preferredMimeType": "image/webp"
|
| 386 |
-
}
|
| 387 |
-
}
|
| 388 |
-
}
|
| 389 |
-
]
|
| 390 |
-
},
|
| 391 |
-
{
|
| 392 |
-
"name": "microsoft/Phi-4",
|
| 393 |
-
"tools": true,
|
| 394 |
-
"systemRoleSupported": false,
|
| 395 |
-
"description": "One of the best small models, super fast for simple tasks.",
|
| 396 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/microsoft-logo.png",
|
| 397 |
-
"modelUrl": "https://huggingface.co/microsoft/Phi-4",
|
| 398 |
-
"websiteUrl": "https://techcommunity.microsoft.com/blog/aiplatformblog/introducing-phi-4-microsoft%E2%80%99s-newest-small-language-model-specializing-in-comple/4357090",
|
| 399 |
-
"preprompt": "",
|
| 400 |
-
"parameters": {
|
| 401 |
-
"stop": ["<|end|>", "<|endoftext|>", "<|assistant|>"],
|
| 402 |
-
"temperature": 0.6,
|
| 403 |
-
"truncate": 28672,
|
| 404 |
-
"max_new_tokens": 3072
|
| 405 |
-
},
|
| 406 |
-
"promptExamples": [
|
| 407 |
-
{
|
| 408 |
-
"title": "Write an email",
|
| 409 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 410 |
-
},
|
| 411 |
-
{
|
| 412 |
-
"title": "Code a game",
|
| 413 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 414 |
-
},
|
| 415 |
-
{
|
| 416 |
-
"title": "Recipe help",
|
| 417 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 418 |
-
}
|
| 419 |
-
],
|
| 420 |
-
"endpoints": [
|
| 421 |
-
{
|
| 422 |
-
"type": "inference-client",
|
| 423 |
-
"baseURL": "https://up5ijetg6a2e9zlb.us-east-1.aws.endpoints.huggingface.cloud/v1"
|
| 424 |
-
}
|
| 425 |
-
]
|
| 426 |
-
},
|
| 427 |
-
{
|
| 428 |
-
"name": "NousResearch/Hermes-3-Llama-3.1-8B",
|
| 429 |
-
"description": "Nous Research's latest Hermes 3 release in 8B size. Follows instruction closely.",
|
| 430 |
-
"tools": true,
|
| 431 |
-
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nous-logo.png",
|
| 432 |
-
"websiteUrl": "https://nousresearch.com/",
|
| 433 |
-
"modelUrl": "https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B",
|
| 434 |
-
"promptExamples": [
|
| 435 |
-
{
|
| 436 |
-
"title": "Write an email",
|
| 437 |
-
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
|
| 438 |
-
},
|
| 439 |
-
{
|
| 440 |
-
"title": "Code a game",
|
| 441 |
-
"prompt": "Code a basic snake game in python, give explanations for each step."
|
| 442 |
-
},
|
| 443 |
-
{
|
| 444 |
-
"title": "Recipe help",
|
| 445 |
-
"prompt": "How do I make a delicious lemon cheesecake?"
|
| 446 |
-
}
|
| 447 |
-
],
|
| 448 |
-
"parameters": {
|
| 449 |
-
"stop": ["<|im_end|>"],
|
| 450 |
-
"temperature": 0.6,
|
| 451 |
-
"truncate": 14336,
|
| 452 |
-
"max_new_tokens": 1536
|
| 453 |
-
},
|
| 454 |
-
"endpoints": [{"type" : "inference-client"}]
|
| 455 |
-
}
|
| 456 |
-
]
|
| 457 |
-
|
| 458 |
NODE_ENV: "prod"
|
| 459 |
NODE_LOG_STRUCTURED_DATA: true
|
| 460 |
OLD_MODELS: >
|
|
@@ -542,7 +139,6 @@ envVars:
|
|
| 542 |
PUBLIC_APP_GUEST_MESSAGE: "Sign in with a free Hugging Face account to continue using HuggingChat."
|
| 543 |
PUBLIC_APP_DATA_SHARING: 0
|
| 544 |
PUBLIC_PLAUSIBLE_SCRIPT_URL: "/js/script.js"
|
| 545 |
-
REQUIRE_FEATURED_ASSISTANTS: "true"
|
| 546 |
TASK_MODEL: >
|
| 547 |
{
|
| 548 |
"name": "NousResearch/Hermes-3-Llama-3.1-8B",
|
|
@@ -555,147 +151,8 @@ envVars:
|
|
| 555 |
}
|
| 556 |
|
| 557 |
|
| 558 |
-
TEXT_EMBEDDING_MODELS: >
|
| 559 |
-
[{
|
| 560 |
-
"name": "bge-base-en-v1-5-sxa",
|
| 561 |
-
"displayName": "bge-base-en-v1-5-sxa",
|
| 562 |
-
"chunkCharLength": 512,
|
| 563 |
-
"endpoints": [{
|
| 564 |
-
"type": "tei",
|
| 565 |
-
"url": "https://huggingchat-tei.hf.space/"
|
| 566 |
-
}]
|
| 567 |
-
}]
|
| 568 |
-
WEBSEARCH_BLOCKLIST: '["youtube.com", "twitter.com"]'
|
| 569 |
-
XFF_DEPTH: '2'
|
| 570 |
-
TOOLS: >
|
| 571 |
-
[
|
| 572 |
-
{
|
| 573 |
-
"_id": "000000000000000000000001",
|
| 574 |
-
"displayName": "Image Generation",
|
| 575 |
-
"description": "Use this tool to generate images based on a prompt.",
|
| 576 |
-
"color": "yellow",
|
| 577 |
-
"icon": "camera",
|
| 578 |
-
"baseUrl": "black-forest-labs/FLUX.1-schnell",
|
| 579 |
-
"name": "image_generation",
|
| 580 |
-
"endpoint": "/infer",
|
| 581 |
-
"inputs": [
|
| 582 |
-
{
|
| 583 |
-
"name": "prompt",
|
| 584 |
-
"description": "A prompt to generate an image from",
|
| 585 |
-
"paramType": "required",
|
| 586 |
-
"type": "str"
|
| 587 |
-
},
|
| 588 |
-
{ "name": "seed", "paramType": "fixed", "value": "0", "type": "float" },
|
| 589 |
-
{
|
| 590 |
-
"name": "randomize_seed",
|
| 591 |
-
"paramType": "fixed",
|
| 592 |
-
"value": "true",
|
| 593 |
-
"type": "bool"
|
| 594 |
-
},
|
| 595 |
-
{
|
| 596 |
-
"name": "width",
|
| 597 |
-
"description": "numeric value between 256 and 2048",
|
| 598 |
-
"paramType": "optional",
|
| 599 |
-
"default": 1024,
|
| 600 |
-
"type": "float"
|
| 601 |
-
},
|
| 602 |
-
{
|
| 603 |
-
"name": "height",
|
| 604 |
-
"description": "numeric value between 256 and 2048",
|
| 605 |
-
"paramType": "optional",
|
| 606 |
-
"default": 1024,
|
| 607 |
-
"type": "float"
|
| 608 |
-
},
|
| 609 |
-
{
|
| 610 |
-
"name": "num_inference_steps",
|
| 611 |
-
"paramType": "fixed",
|
| 612 |
-
"value": "4",
|
| 613 |
-
"type": "float"
|
| 614 |
-
}
|
| 615 |
-
],
|
| 616 |
-
"outputComponent": "image",
|
| 617 |
-
"outputComponentIdx": 0,
|
| 618 |
-
"showOutput": true
|
| 619 |
-
},
|
| 620 |
-
{
|
| 621 |
-
"_id": "000000000000000000000002",
|
| 622 |
-
"displayName": "Document Parser",
|
| 623 |
-
"description": "Use this tool to parse any document and get its content in markdown format.",
|
| 624 |
-
"color": "yellow",
|
| 625 |
-
"icon": "cloud",
|
| 626 |
-
"baseUrl": "huggingchat/document-parser",
|
| 627 |
-
"name": "document_parser",
|
| 628 |
-
"endpoint": "/predict",
|
| 629 |
-
"inputs": [
|
| 630 |
-
{
|
| 631 |
-
"name": "document",
|
| 632 |
-
"description": "Filename of the document to parse",
|
| 633 |
-
"paramType": "required",
|
| 634 |
-
"type": "file",
|
| 635 |
-
"mimeTypes": 'application/*'
|
| 636 |
-
},
|
| 637 |
-
{
|
| 638 |
-
"name": "filename",
|
| 639 |
-
"paramType": "fixed",
|
| 640 |
-
"value": "document.pdf",
|
| 641 |
-
"type": "str"
|
| 642 |
-
}
|
| 643 |
-
],
|
| 644 |
-
"outputComponent": "textbox",
|
| 645 |
-
"outputComponentIdx": 0,
|
| 646 |
-
"showOutput": false,
|
| 647 |
-
"isHidden": true
|
| 648 |
-
},
|
| 649 |
-
{
|
| 650 |
-
"_id": "000000000000000000000003",
|
| 651 |
-
"name": "edit_image",
|
| 652 |
-
"baseUrl": "multimodalart/cosxl",
|
| 653 |
-
"endpoint": "/run_edit",
|
| 654 |
-
"inputs": [
|
| 655 |
-
{
|
| 656 |
-
"name": "image",
|
| 657 |
-
"description": "The image path to be edited",
|
| 658 |
-
"paramType": "required",
|
| 659 |
-
"type": "file",
|
| 660 |
-
"mimeTypes": 'image/*'
|
| 661 |
-
},
|
| 662 |
-
{
|
| 663 |
-
"name": "prompt",
|
| 664 |
-
"description": "The prompt with which to edit the image",
|
| 665 |
-
"paramType": "required",
|
| 666 |
-
"type": "str"
|
| 667 |
-
},
|
| 668 |
-
{
|
| 669 |
-
"name": "negative_prompt",
|
| 670 |
-
"paramType": "fixed",
|
| 671 |
-
"value": "",
|
| 672 |
-
"type": "str"
|
| 673 |
-
},
|
| 674 |
-
{
|
| 675 |
-
"name": "guidance_scale",
|
| 676 |
-
"paramType": "fixed",
|
| 677 |
-
"value": 6.5,
|
| 678 |
-
"type": "float"
|
| 679 |
-
},
|
| 680 |
-
{
|
| 681 |
-
"name": "steps",
|
| 682 |
-
"paramType": "fixed",
|
| 683 |
-
"value": 30,
|
| 684 |
-
"type": "float"
|
| 685 |
-
}
|
| 686 |
-
],
|
| 687 |
-
"outputComponent": "image",
|
| 688 |
-
"showOutput": true,
|
| 689 |
-
"displayName": "Image Editor",
|
| 690 |
-
"color": "green",
|
| 691 |
-
"icon": "camera",
|
| 692 |
-
"description": "This tool lets you edit images",
|
| 693 |
-
"outputComponentIdx": 0
|
| 694 |
-
}
|
| 695 |
-
]
|
| 696 |
HF_ORG_ADMIN: '644171cfbd0c97265298aa99'
|
| 697 |
HF_ORG_EARLY_ACCESS: '5e67bd5b1009063689407478'
|
| 698 |
-
HF_API_ROOT: 'https://api-inference.endpoints.huggingface.tech/models'
|
| 699 |
infisical:
|
| 700 |
enabled: true
|
| 701 |
env: "prod-us-east-1"
|
|
@@ -714,6 +171,3 @@ resources:
|
|
| 714 |
limits:
|
| 715 |
cpu: 4
|
| 716 |
memory: 8Gi
|
| 717 |
-
|
| 718 |
-
monitoring:
|
| 719 |
-
enabled: true
|
|
|
|
| 42 |
kubernetes.io/ingress.class: "alb"
|
| 43 |
|
| 44 |
envVars:
|
|
|
|
| 45 |
ADMIN_CLI_LOGIN: "false"
|
| 46 |
ALTERNATIVE_REDIRECT_URLS: '["huggingchat://login/callback"]'
|
| 47 |
APP_BASE: "/chat"
|
|
|
|
| 52 |
ENABLE_ASSISTANTS: "true"
|
| 53 |
ENABLE_CONFIG_MANAGER: "false"
|
| 54 |
LOG_LEVEL: "debug"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
NODE_ENV: "prod"
|
| 56 |
NODE_LOG_STRUCTURED_DATA: true
|
| 57 |
OLD_MODELS: >
|
|
|
|
| 139 |
PUBLIC_APP_GUEST_MESSAGE: "Sign in with a free Hugging Face account to continue using HuggingChat."
|
| 140 |
PUBLIC_APP_DATA_SHARING: 0
|
| 141 |
PUBLIC_PLAUSIBLE_SCRIPT_URL: "/js/script.js"
|
|
|
|
| 142 |
TASK_MODEL: >
|
| 143 |
{
|
| 144 |
"name": "NousResearch/Hermes-3-Llama-3.1-8B",
|
|
|
|
| 151 |
}
|
| 152 |
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
HF_ORG_ADMIN: '644171cfbd0c97265298aa99'
|
| 155 |
HF_ORG_EARLY_ACCESS: '5e67bd5b1009063689407478'
|
|
|
|
| 156 |
infisical:
|
| 157 |
enabled: true
|
| 158 |
env: "prod-us-east-1"
|
|
|
|
| 171 |
limits:
|
| 172 |
cpu: 4
|
| 173 |
memory: 8Gi
|
|
|
|
|
|
|
|
|